Class 1

CSC 436: i0S App Development

Introduction

Si Chen (schen@wcupa.edu)

Introduction

= You'll start by focusing on iOS development tools, basic programming
concepts, and industry best practices. Building on this foundation, you'll

work through practical exercises, creating apps from scratch, and building
the mindset of an app developer.

Page = 2

Getting Started with App Development

= Two type of lessons

— Swift Fundamental (Usually on Tuesday) Ny
« Basic syntax —

« Some new concepts
— App Design and Development (Usually on Thursday)
« SDK

» Building specific features for iOS apps

* Mini-project, in-class labs

Page = 3

Getting Started with App Development

» Two type of lessons

— Swift Fundamental (Usually on Tuesday) N

« Basic syntax —
« Some new concepts (closures, types...)

— App Design and Development (Usually on Thursday)
« SDK

» Building specific features for iOS apps

* Mini-project, in-class labs

Page = 4

A Little History about Swift

= At the Apple Worldwide Developers Conference 2014, Apple introduced Swift as
a modern language for writing apps for iOS and macOS. Apple now has new

platforms, including watchOS and tvOS, that also use Swift as the primary
programming language.

» Since the 1990s, most developers have written applications for Apple platforms in
Objective-C, a language built on top of the C programming language. Objective-
C is more than 30 years old, and C is more than 40 years old.

= As you learn Swift, you may see the influence of its C and Objective-C heritage.

Most Popular Programming Languages
in 2020 According to Stack Overflow

13.49%

10.71%

Page = 5

Found a job opening that requires 8+
years of Swift experience.

Swift is a programming language that
came out 3 years ago.

8/18/17, 2:05 PM

26.4K Retweets 67K Likes

Page = 6

Pros and Cons of Swift

Pros and Cons of Swift

@b Advanced Functionality ‘ p Constant Changes

High Speed
of Development

No Support For Earlier
P Versions

e Cross-Platform

0 Absence of C++ Import
Development

@ Open Source

Popular Products Built with Swift

Functional Programming Features

» Swift is a function-based programming language. It has higher-order
functions, functions as values, nested functions, closures, anonymous
functions, and other functional programming attributes.

Page = 9

Hello World

= Swift code is written in plain text files with a .swift file extension. Each line
in the file represents a statement, and a program is made up of one or
more statements. These are the instructions you wish your app to run.

» [n Swift, the default file is called main.swift. Any Swift code included in
the main.swift file will be executed from top to bottom.

print(”"Hello, world!”

Page = 10

Terminal and Swift REPL

= macOS comes with a console app called Terminal, and Swift comes with
a tool called a REPL, which stands for Read, Eval, Print Loop. The REPL
allows you to enter simple commands, evaluate them, and print the resulit.

» Use the Swift REPL in the console to write your first “Hello, world!”
program.

— Open the Terminal application on your Mac. You can search “Terminal” in
Spotlight or find the application in the system Applications/Utilities folder.

— Enter the Swift REPL by typing swift and pressing Return.
— Type the command print("Hello, world!”) and press Return to execute it.

p
{quake@day|~)v>
Apple Swift version 5.6.1 (swiftlang-5.6.0.323.66 clang-1316.0.20.12)
Target: armé64-apple-macosx12.0

Subcommands :

swift build Build Swift packages

swift package Create and work on packages

swift run Run a program from a package

swift test Run package tests

swift repl Experiment with Swift code interactively (default)

Use “swift --help’ for descriptions of available options and flags.

Use “swift help <subcommand>" for more information about a subcommand.

Welcome to Apple Swift version 5.6.1 (swiftlang-5.6.0.323.66 clang-1316.0.20.12).

Type :help for assistance.
Page = 11 print("hello world")
hello world

Playground

» Playground: a special Xcode document type that runs Swift code in a
simple format with easily visible results.

D Build Succeeded | Today at 3:51 PM + B
- o Q A B MyPlayground 20 ®
MyPlayground
> 3k MyPlayground yriavg

1 dimport UIKit
2

3 var greeting = "Hello, playground"
®

0

Page = 12 Ol=]

Swift Playground

Online:
http://online.swiftplayground.run/

Now go and build your first “Hello, world!” using an Xcode playground.
1. Open Xcode.

2. Create a new playground file by choosing File > New > Playground from the
menu bar.

3. Choose the iOS platform and the Blank template.

4. Name your playground “Hello, world!” and save it to your course resources folder.

Page = 13

What about the UlI??

@O =20 6 @S- 90:0 0 i

Page = 14

Getting Started with App Development

» Two type of lessons
— Swift Fundamental (Usually on Tuesday) N
« Basic syntax
« Some new concepts (closures, types...)
— App Design and Development (Usually on Thursday)
- SDK

« Building specific features for iOS apps

* Mini-project, in-class labs

Page = 15

SwiftUI

SwiftUl helps you build great-looking apps across all Apple
platforms with the power of Swift — and surprisingly little code.
You can bring even better experiences to everyone, on any
Apple device, using just one set of tools and APIs.

import SwiftUI

10 @Emain
struct myfristappl1l1App: App {
var body: some Scene {
WindowGroup {
ContentView()

Page = 16 X }

Other concepts
9

SpriteKit

» Add high-performance 2D content with smooth animations to your app, or
create a game with a high-level set of 2D game-based tools.

Page = 17

AVFoundation

= AVFoundation combines several major technology areas that together
encompass a wide range of tasks for inspecting, playing, capturing, and
processing audiovisual media on Apple platforms.

Page = 18

= Enable players to interact with friends, compare leaderboard ranks, earn
achievements, and participate in multiplayer games.

Page = 19

Developer Documentation

(D
Swift
> a8 Accessibility
> a8 App Clips
> s AppKit
> s Bundle Resources
> aa Foundation
> a8 ScreenCaptureKit
> a8 Swift
v 28 Swiftul
Essentials
> & Introducing SwiftUl
> & Exploring SwiftUl Sample A...
App Structure
:= App Structure and Behavior
i= Scenes
:= App Extensions
:= State and Data Flow
User Interface Elements
> = View Fundamentals

> = Text Input and Output
> = Images

> i= Controls and Indicators
> := Shapes

> i= Drawing and Graphics

View Containers

Layout Containers

Collection Containers

Presentation Containers
Framework Integration
> i= SwiftUl Views Displaved by...

(GD)

Page = 20

Q|

SwiftUl Scenes) [P Scene

Protocol

Scene

A part of an app's user interface with a life cycle
managed by the system.

Declaration

protocol Scene

Overview

You create an App by combining one or more instances that conform to
the Scene protocol in the app’s body. You can use the built-in scenes
that SwiftUl provides, like WindowGroup, along with custom scenes
that you compose from other scenes. To create a custom scene,
declare a type that conforms to the Scene protocol. Implement the
required body computed property and provide the content for your
custom scene:

Crnnn S

ctviint MuCAnnae

Availability

Technology
SwitUl

On This Page
Declaration ©
Overview ©
Topics ©
Relationships ©

Model-View-Controller

User action Update

Update Notify

Page = 21

Constants, Variables, and Data Types

» Constants and variables must be declared before they're used. You
declare constants with the let keyword and variables with
the var keyword.

let maximumNumberOfLoginAttempts = 10
var currentLoginAttempt = 0

= You can declare multiple constants or multiple variables on a single line,
separated by commas:

var x = 0.0, y = 0.0, z = 0.0

Page = 22

Type Annotations

* You can provide a type annotation when you declare a constant or
variable, to be clear about the kind of values the constant or variable can
store.

= Write a type annotation by placing a colon after the constant or variable
name, followed by a space, followed by the name of the type to use.

var welcomeMessage: String

Page = 23

Type Annotations

* You can define multiple related variables of the same type on a single
line, separated by commas, with a single type annotation after the final
variable name:

var red, green, blue: Double

Page = 24

Printing Constants and Variables

» Swift uses string interpolation to include the name of a constant or
variable as a placeholder in a longer string, and to prompt Swift to replace
it with the current value of that constant or variable.

= Wrap the name in parentheses and escape it with a backslash before
the opening parenthesis:

print("The current value of friendlyWelcome is \(friendlyWelcome)")
// Prints "The current value of friendlyWelcome is Bonjour!"

Page = 25

Comments

= Comments in Swift are very similar to comments in Java.

// This is a comment.

/* This is also a comment
but is written over multiple lines. x/

/* This is the start of the first multiline comment.
/* This is the second, nested multiline comment. x/
This is the end of the first multiline comment. x/

Page = 26

= Unlike many other languages, Swift doesn’t require you to write a
semicolon (;) after each statement in your code, although you can do so if
you wish.

» However, semicolons are required if you want to write multiple separate
statements on a single line:

let cat = "&"; print(cat)
71 Pripts "

Page = 27

let @ = "pumpkin"
print (@+ +@)

http://online.swiftplayground.run/

Page = 28

Most Common Types in Swift

Page = 29

Name

Integer

Double

Boolean

String

Type

Purpose

Represents whole numbers,
or integers

Represents numbers
requiring decimal points, or
real numbers

Represents or
values

Represents text

Example

Type Inference

* You may have noticed that you don’t have to specify the type of value
when you declare a constant or variable. This is called type inference.
Swift uses type inference to make assumptions about the type based on
the value assigned to the constant or variable.

let "San Francisco”

let 3.1415927

let String

Create your own type

struct Car
var String
var String

var Int

Page = 31

» Defines a new structure called Resolution, to describe a pixel-based
display resolution.

» This structure has two stored properties called width and height. Stored
properties are constants or variables that are bundled up and stored as
part of the structure or class. These two properties are inferred to be of
type Int by setting them to an initial integer value of 0.

import UIKit

struct Car{
var make:String
var model:String
var year:Int

}

var ¢ = Car(make: "BMwW",
model: "X3", year:
2022)
10 print(c.make])

Page = 32

®e

& A

Page = 33

