CIassO8
CSC 600 Advanced Seminar

CVE-2008-4230 RPC and Conflicker Worm
Si Chen (schen@wcupa.edu)

Worm vs a virus

1. Self propagates across the network

{om—

2. Exploits security or policy flaws in
widely used services

3. Less mature defense today

Activation

Target

Attacker

Payload

Carrier

OVERVIEW

CVE-2008-4250 (MS08-067)
&
Conficker Worm

Worm:Win32 Conficker

[i Computers within a network that have
weak passwords and without latest
security update/anti-virus softwares are

3 (= A infected with the worm.
/AN
5= 1\
/ (. _)
Computers that have unsecured/open
shared folders without latest security
) update/anti-virus softwares are infected
with the worm.
TAN
()
Computer without a strong password,
secured shared folder, latest security
update or anti-virus software is infected
7 Y 7 with the worm.

=L

Computer with strong password,
secured shared folder, latest security
update and anti-virus software is
protected from the worm.

Page=5

* [n October 2008, Microsoft urgently released a critical security patch to fix
the threat posed by the CVE-2008-4250 vulnerability (internally known as
MS08-067). Since this patch was not released on Microsoft's regular
Patch Tuesday, it is called an Out-of-Band Update.

‘TTACKERKB: CVE-2008-4250

Microsoft RPC Code
Execution MS08-067

II ATTACKER VALUE II EXPLOITABILITY
|II VERY HIGH |II VERY HIGH

Page =6

* The CVE-2008-4250 vulnerability that broke out at that time and the
subsequent Conficker worm variants were a very serious security event
that lasted for several months. Dustin Childs, the then Security Program
Manager (SPM) at Microsoft Security Response Center (MSRC), recalled:

"At the time, | was personally surprised to see Microsoft's various departments
working together to deal with this vulnerability. Our Microsoft headquarters,
Indian and European branch teams were almost working around the clock. One
thing that impressed me was that when we held the first Security Incident
Response Process (SSIRP) meeting for the MS08-067 vulnerability, there were 15
people in the conference room, and many experts joined the meeting via
telephone conference lines. After the person in charge explained the basic
situation of the vulnerability, the atmosphere in the meeting suddenly fell into a
momentary silence, because we knew that a large number of worm viruses would
accompany this vulnerability.

Page =7

From that moment on, we understood that the battle had begun. People who have
not experienced such a large-scale event may not have the same experience. The
people in the room were all information security experts, and they had personally
dealt with super worm viruses such as Melissa, Nimda, Slammer, Sasser, and Code
Red. Another interesting thing is that, due to the priority of emergency response, |
only needed to explain the situation of the MS08-067 vulnerability, and | could
immediately coordinate and allocate staff to participate in the response process. In
response to this vulnerability, all Microsoft employees worked around the clock for
17 days..."

This demonstrates the severity of this vulnerability. Therefore, we have
chosen this very unique and significant vulnerability for study.

Page =8

Introduction

= Brief overview of CVE-2008-4250 vulnerability

= Connection between vulnerability and differences between "." and ".." in
command-line operations

Page=9

Brief overview of CVE-2008-4250 vulnerability

CVE-2008-4250 Learn more at National Vulnerability Database (NVD)

e CVSS Severity Rating e Fix Information e Vulnerable Software Versions « SCAP
Mappings ¢ CPE Information

The Server service in Microsoft Windows 2000 SP4, XP SP2 and SP3, Server 2003 SP1 and SP2, Vista Gold
and SP1, Server 2008, and 7 Pre-Beta allows remote attackers to execute arbitrary code via a crafted RPC

request that triggers the overflow during path canonicalization, as exploited in the wild by Gimmiv.A in
October 2008, aka "Server Service Vulnerability."

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4250

Page = 10

Differences between "." and

» Before we delve into the CVE-2008-4250 vulnerability, | need to introduce
some basic knowledge, as the cause of this vulnerability is related to the

differences between "." and ".." in command-line operations, and how the
program handling these two symbols.

» To illustrate this issue, | created a folder named "a" in the root directory of
my C drive, and then created a folder named "b" inside "a" folder, which

contains a "c" folder, and finally a "d" folder, as shown in the following
hierarchy:

) C:Aa\b\c\d v & Go

File and Folder Tasks A

_J Make a new folder

@ Publish this folder to the
Weh

Page = 11 tf Share this folder

Differences between "." and

* Then we open the command-line window and go to the root directory of
the C drive. Normally, if we want to enter the "a" directory, we can simply
enter the following command:

oA Uzers\Admini stratorred),

= [f we want to enter multiple directories, we can enter the following
command:

Page = 12

Differences between "." and

» And if we want to go back to the previous directory, we can enter:

= [f we enter a dot, it means we are still in the current directory and do
nothing:

» That is, a dot represents the current directory, and two dots represent the
previous directory. We can also use the following command to go directly
back to the root directory:

Page = 13 []l

Differences between "." and

= [f we want to enter multiple directories at this time, besides the method
mentioned above, there are actually several other ways, such as if we
only want to enter the "a" directory, we can also write like this:

Page = 14

Differences between "." and

» Therefore, before executing our command, the command line can actually
perform a simplification operation, which is to convert ".a" or ".a" to "a" or

"a" form, and remove the "." here.

= S0 much for the use of a dot. Next, there are two dots. For example, if we
are in the current "a" directory and enter the following command:

= [t can be seen that these two commands do not change the current
directory structure. This is because the "cd" command will help us enter
the "b" directory, and the two dots mean to return to the previous level
directory, which is the "a" directory, and then it is still the current directory.
Separated writing is like this:

Differences between "." and

» That is to say, assuming that the directory hierarchy structure is not
wrong, the writing method like "b.." or "b.." can be directly omitted. Then
let's take a look at a slightly more complicated writing method. Still in the
current "a" directory, enter the following command:

* The meaning of this command is to first enter the "b" directory in the
current "a" directory, then return to the previous directory, that is, return to
the "a" directory, and then return to the root directory of the C drive, and
finally enter the "d" directory. According to the conclusion we just
obtained, the writing method like "b.." can be directly omitted, so the path
that the above command wants to enter is actually equivalent to "..abcd".

So, these are the basic knowledge we
need to know about the dot symbol.

Page = 16

Programming the idea of simplifying directory structure

» Regardless of whether our command-line tool simplifies directories before
executing our commands, one of the sub-functions in the
NetpwPathCanonicalize function in our netapi32.dll has this feature. So
here we need to implement two functions, one is the processing method
for a dot. This situation is the simplest. Just remove the "." directly.
However, our NetpwPathCanonicalize function does not use deleting
functions to simplify strings, but uses the wcscpy() function to copy the
contents of the left pointer to the right pointer, as shown in the following
figure:

a\b\c\A —~" a\b\c\d

92 p1

Page = 17

Programming the idea of simplifying directory structure

» Since the case with two dots also needs to remove the directory name in
front of these two dots, in addition to the basic need for two pointers pl
and p2 to mark the addresses of the slashes on both sides of the dot, a
pointer p3 is also needed to mark the position of the slash in front of the
directory name to be removed, and then we can use the wcscpy() function
to copy the contents pointed to by p1 to the position of p3.

a\b\c\ \c wcscpy (p3, p1) a\b\c

p3 p2 p1

Page = 18

Conclusion

» The content we discussed in this course seems very simple, but even for
such programming problems, a Microsoft engineer's negligence caused a
serious vulnerabllity. In the next part, we will focus on the static analysis of
this problem. But the premise is that you must thoroughly understand the
content of this course.

= After all, the vulnerability research is a one-step-by-step process, and only
by mastering these basics can we help us with our research and analysis
In the future.

Page = 19

Static Analysis

» The CVE-2008-4250 vulnerability we are studying this time is still in the
NetpwPathCanonicalize function of the netapi32.dll file, but the location
has changed and the idea is different.

» [ts cause is due to a developer's negligence and lack of rigor in the string
movement operation, which did not strictly check the out-of-bounds
situation.

Page = 20

Static Analysis

» The function we are researching this time is the same as before, which is
the path character function used to splice and normalize path characters
In the NetpwPathCanonicalize function, and the call location of this
function is at OXxX5FDDA15B in the NetpwPathCanonicalize function:

bl 5=

SFODA14C mou esi, [ebp+arg 4]
SFDDA14F push edi ; iInt
SFDDA158 push [ebp+arg 8] ; int
SFODA153 mou [esi], di

SFDDA156 push esi int

SFDDAM1SY push [ebp+arg H]
SFDDA1SA push ebx

SFDDAMSE call sub SFDDA1EA
SFDDA168 cmp eax, edi
SFDDA162 jnz short loc SFDDAAGE

wchar t =
wchar_ t =

Page = 21

Static Analysis

Enter the sub_5FDDA180 function, starting at OxX5SFDDA1EQ, we can see
that the program uses the wcscat() function to splice the path, and the
spliced path will be placed in the local variable var_418. Next, a loop
operation (green bold arrow) is used to check whether the "/" character or
"slash" character exists in the spliced string. If it exists, it will be converted
to the backslash character or " character

After the conversion is completed, the program will push var_418, the

converted path string, as the only argument to the stack, and call the
sub 5FDDAZ26B function. It is this function that has an overflow problem.

Page = 22

\$% (& *8&*) &) (* \A\ \. .\BBBB. . .

eLurEdress ﬁ:; : ?
\$% (& *&*) &) (x \. \BBBB

\BBBBBBBBBBBBBBBB

Return Address

Fingerprinting the Malware -- Cryptographic Hash

OSEELLA, -

DAL T
wluhl

1l

I

|

I

Page = 24

Fingerprinting the Malware

» Fingerprinting involves generating the cryptographic hash values for the
suspect binary based on its file content.

= Same cryptographic hashing algorithms:
— MD5
— SHA1
— SHA256

» Why not just use the file name?

— Ineffective, same malware sample can use different filenames, cryptographic
hash is calculated based on the file content.

» File hash is frequently used as an indicator to share with other security
researchers to help them identify the sample.

Page = 25

Tools and Python code

md5sum
sha256sum
shalsum

import hashlib
import sys

filename = sys.argv[1]

content = open(filename, "rb").read()
print hashlib.md5(content).hexdigest()
print hashlib.sha256(content).hexdigest()
print hashlib.shal(content).hexdigest()

Page = 26

* Finding Strings [

Page =

A string in a program is a sequence of characters such as “the.”

A program contains strings if it prints a message, connects to a URL, or copies
a file to a specific location.

Searching through the strings can be a simple way to get hints about the
functionality of a program.

* For example, if the program accesses a URL, then you will see the URL
accessed stored as a string in the program.

You can use the Strings program to search an executable for strings, which are
typically stored in either ASCII or Unicode format.

27

[1]. Practical Malware Analysis, page 11

Static analysis (myhack.dll)

C:sWork>strings.exe myhack.dll_

_nextafter

index.html

http: v _naver.comsindex.html

<myhack.d1ll> Injection?t? — CS8C 497583 — 5i Chen
QI

QI

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved)
{
HANDLE hThread = NULL;

g_hMod = (HMODULE)hinstDLL;

switch(fdwReason)

{

case DLL_PROCESS_ATTACH :
OutputDebugString(L"<myhack.dll> Injection!!! —— CSC 497/583 —-- Dr. Chen");
hThread = CreateThread(NULL, @, ThreadProc, NULL, ©, NULL);
CloseHandle(hThread);
break;

}

return TRUE;

Page = 28

Static analysis (myhack.dll)

45

7. PRPEPR? P PL?
Tg8n8

2&7?R9

P igiried
Hae>+202A2U

17

AGA"AiAgA I8
1a1*1

2'"2+363

9T919 2
tfH=Ath:}:
!}!:!H:ﬂ:l,=;
{"{}{J{J{Q{

{'{ {+{1{5{?{R{[{u{

Sometimes the strings detected by the
Strings program are not actual strings.

Page = 29

strings in Linux and flare-floss

1 * FireEye Labs Obfuscated String Solver

FI I] SS — Many malware authors evade heuristic detections by obfuscating only key

5y portions of an executable

» These portions are strings and resources used to configure domains,
files, and other artifacts of an infection

— The FireEye Labs Obfuscated String Solver (FLOSS) uses advanced statit
analysis techniques to automatically deobfuscate strings from malware

t)|r]€1r|€355_ root@localhost ./floss a99c01d5748b1bfd203fc1763e6612e8
FLOSS static ASCII strings
IThis program cannot be run in DOS mode.
Rich
.text
“.rdata
@.data

uTVwWhA7@
PPPPP

<y*Y

~SSSSS

tAVWP

Y[~

PPPPP

8"u8

Page = 30 t J\Yf

t$9u

QQSVYwh

Packed and Obfuscated Malware

« Malware writers often use packing or obfuscation to make their
files more difficult to detect or analyze.

 Obfuscated programs are ones whose execution the malware
author has attempted to hide.

« Packed programs are a subset of obfuscated programs in which the
malicious program is compressed and cannot be analyzed.

« Both techniques will severely limit your attempts to statically analyze
the malware.

Start

i Start
\ Wrapper Program

Original Executable

(Strings and other Packed Executable
information visible)
(Strings and other
information not
visible)

Page = 31

Packed and Obfuscated Malware

% PEID v0.95

File: | Cworkimyhack. dl M)
Entrypaint: | 00001412 EP Section: | ,text =]
File Offset: | 00000512 First Bytes: |55,8B,EC,E3 | = |
Linker Info: | 14,16 Subsystem: |Win32 GUI B
Mothing Found *
Mulki Scan Task Wiewer Dptions Abouk | Exit
v Skay on kop 3 | -

Page = 32

Packers and Cryptos

» ~ upx -o myhack packed.dll myhack.dll
Ultimate Packer for eXecutables
Copyright (C) 1996 - 2018
UPX 3.95 Markus Oberhumer, Laszlo Molnar & John Reiser Aug 26th 2018
File size | Format

75264 39424 52.38% win32/pe myhack packed.dll

Packed 1 file.

Page = 33

Portable Executable (PE) file

= A Portable Executable (PE) file is the standard binary file format for an
Executable (.exe) or DLL under Windows NT, Windows 95, and WIin32.

» Derived from COFF (Common Object File Format) in UNIX platform, and it
is not really “portable”.

Now here is the kicker. Even though this specification is
spelled out by Microsoft, compilers/linkers chose to ignore
some parts of it.

DOS MZ Header

To make things even worse, the Microsoft loader doesn't
enforce a good portion of this specification and instead
makes assumptions if things start getting weird.

So even though the spec outlined here says a particular
field is supposed to hold a certain value, the
compiler/linker or even a malicious actor could put
whatever they want in there and the program will
likely still run...

Wi
Page = 34 im@i'
[[}Fa

Portable Executable (PE) file

= PE formatted files include:

— .exe, .scr (executable) '-‘

— .dll, .ocx, .cpl, drv (library)

— .SYs, .vxd (driver files)
— .0bj (objective file)
= All PE formatted files can be executed, except obj file.
— .exe, .scr can be directly executed inside Shell (explorer.exe)
— others can be executed by other program/service

= PE refers to 32 bit executable file, or PE32. 64 bit executable file i1s
named as PE+ or PE32+. (Note that it is not PE64).

Page = 35

PE Example — Notepad.exe

00000000 218 S5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 ZE......... -
00000010 B8 00 00 0O 00 0O 00 0O 40 00 GO 00 0 00 GO 00 F....... @ovennnn
00000020 00 00 00 00 OO OO OO0 00|00 00 OO 00 00 00 OO0 00 . ..iiiiiiinnnan
00000030 00 00 00 00 OO OO 00 00 |0 00 OO 00 E8 00 OO 00 D. ..
00000040 OE 1F BA OE 00 B4 09 CD|21 B8 01 4C CD 21 54 68 .."..4.=!ﬂ.L=lTh

00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F ds.program.canno
00000060 T4 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t.be.run.in.DOS.
00000070 6D 6F 64 65 2E 0D OD OA 24 00 00 00 00 00 00 00 mode....$5.......
00000080 A5 6D 16 9B E1 OC 78 C8 E1 OC 78 C8 E1 0C 78 C8 MNm.d¢R.xIR.xLr.xL
00000090 1B 2F 38 C8 EO@ OC 78 C8 E1 0C 78 C8 E® 0oC 78 €8 ./8lku.xlr.xly.xL
000000A0 1B 2F 61 C8 F2 0C 78 C8 E1 0C 79 C8 23 0C 78 €8 ./als.xlp.yls xL
00000OBO 76 2F 3D C8 EO@ OC 78 C8 3B 2F 64 C8 F2 0C 78 €8 v/=Ly.xL;/dls. xL
000000CO 1B 2F 45 C8 EO OC 78 C8 52 69 63 68 E1 0C 78 €8 ./Eky.xLRichRr.xL
000000DO 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00 +..uveeeeweewnn..

OOOOOOED 00 00 00 00 GO0 OO0 00 OO0 50 45 GO0 00 4C 01 63 00 PE..L...
000000FO OD 84 7D 3B 00 00 00 0O 00 00 0O 00 EO 00 OF 01 .&};........ (o'
00000100 OB 01 07 00 GO 6E 00 00 00 A6 GO 00 00 00 GO 0O Nev 20,
00000110 EO 6A 00 00 00 10 00 00 OO0 80 GO 00 0O 00 00 01 Gj....... Covvnns
00000120 00 10 00 00 00 02 00 OO0 05 OO0 01 00 B5 00 B1 00 ...vieii v ennas
00000130 04 00 OO0 0O 0O 60 00 OO0 GO 30 01 00 OO 04 60 00 O......
00000140 55 D8 01 00 02 60 00 80 00 00 04 00 00 10 01 00 U+ Covvvvnn
00000150 00 00 10 00 00 10 00 00 00 OO0 OO0 00 10 00 B0 00iiiiinnnns
00000160 00 00 00 0O 00 00 00 00 20 6D OO 0O C8 00 6O 0O m..L. ..

00000170 00 AD 0O 00 48 89 00 00 OO 0O GO 00 OO0 00 GO 00 .a..Hé..........
00000180 00 00 00 0O 0O 600 00 OO OO0 OO OO0 00 B0 00 B0 00civiinnnnns
00000190 40 13 00 00 1C 00 00 00|00 00 OO0 00 OO 00 B0 00 @....vvvivvennn.

Page = 36

Load PE file (Notepad.exe) into Memory

Notepad.exe

<File> <Memory>
Offset Offset
00000000 DOS header DOS header 01000000
00000040 DOS stub DOS stub 01000040
000000EOQ NT header NT header 010000EOQ
000001D8 Section header (.text) Section header (.text) 010001D8
00000200 Section header (.data) Section header (.data) 01000200

00000228 Section header (.rsrc) Section header (.rsrc) 01000228

00000400

7800 Section (.text) 01001000

Section (.text) s

00007C00
soo Section (.data)

00008400

01009000

8400 Gection (.rsrc)

Section (.data) 1Bas

Section (.rsrc) 8314

00010800

0100B000

Page = 37 01014000

Page = 38

Segment
Registers

Segment
Descriptors

CS

Access l Limit

Base Address

SS

Access I Limit

AN

Linear Address Space
(or Physical Memory)

Stack

Base Address

DS

Access I Limit

Base Address

ES

Access | Limit

Base Address

FS

Access Limit

Base Address

GS

Access Limit

AN

Code

Data

Data

Base Address

Access Limit

Base Address

Access Limit

Base Address

Access I Limit

Base Address

Access [Limit

Base Address

Data

Data

VA & RVA

= VA (Virtual Address): The address is called a “VA” because Windows
creates a distinct VA space for each process, independent of physical
memory. For almost all purposes, a VA should be considered just an
address. A VA is not as predictable as an RVA because the loader might
not load the image at its preferred location.

» RVA (Relative Virtual Address): The address of an item after it is loaded
Into memory, with the base address of the image file subtracted from it.
The RVA of an item almost always differs from its position within the file
on disk (file pointer).

RVA + ImageBase = VA

In 32bit Windows OS, each process has 4GB virtual memory
which means the range of VA is: 00000000 - FFFFFFFF

Page = 39

DOS Header

struct DOS Header

{ | | The first 2 letters are always the

// short is 2 bytes, long is 4 bytes " " L
char signature[2] = { 'M', 'Z' }; |e'['[erS MZ y the |n|t|aIS Of Mark
SROTE asts za; Zbikowski, who created the first linker
short nblocks; .
short nreloc; for DOS. To some people, the first few
short hdrsize; : . :
irats sty bytes in a file that determine the type
short maxalloc; of file are called the "magic number,"

void *ss; // 2 byte value
void *sp; // 2 byte value
short checksum;

void *ip; // 2 byte value
void *cs; // 2 byte value
short relocpos;

short noverlay;

short reservedl[4];

short oem id;

short oem info;

short reserved2[10];

long e lfanew; // Offset to the 'PE\0\0' signature relative to the beginning of the file

Page = 40

DOS Header

long e lfanew;

long = 32 bit > ? Byte

Qff=set(h) 00 01 02 03 04 05 06 OF 03 09 0OA OB OC OD OE OF Decoded text

aooooooo FD 5L190 00 03 00 0o OO 04 O OO0 OO FF FF OO OO0 ﬁE

aooooolo BS OO0 00 OO0 00 00 0 OO0 40 00 0 00 oo OO 00 00 .. ee.. Boovonn.

gooooozo 00 O o0 OO0 O OO o0 OO o0 oo o0 OO0 00 00 00 OO0 & e e e s e s e mwmwas

aooooo3o o0 O 00 o0 O o0 o0 0o o0 o0 oo OO JEC OO0 00 000 v e e e e e e e e B
EO 00 00 00

value for e_lfanew = ?

Page = 41

DOS Header

Qff=set(h) 00 01 02 03 04 05 06 OF 03 09 0OA OB OC OD OE OF Decoded text
aooooooo FD 5L190 00 03 00 0o OO 04 O OO0 OO FF FF OO OO0 ﬁE

aooooolo BS OO0 00 OO0 00 00 0 OO0 40 00 0 00 oo OO 00 00 .. ee.. Boovonn.
gooooozo 00 O o0 OO0 O OO o0 OO o0 oo o0 OO0 00 00 00 OO0 & e e e s e s e mwmwas
aooooo3o o0 O 00 o0 O o0 o0 0o o0 o0 oo OO JEC OO0 00 000 v e e e e e e e e B

e Ifanew - 000000EO

Page = 42

DOS stub

00000040 OE IF BA OE 00 B4 09 CD 21 BS 01 4C CD 21 54 68 L.°.. .I!',.LI'Th
00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno
00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t be run in DOS

00000070 6D 6F 64 65 2E OD OD OL 24 00 00 00 00 00 00 00 mode....$.......
00000080 EC 85 5B L1 AS E4 35 Fz A8 E4 35 F2 A8 E4 35 Fz2 i.[; &S50 &S50 450
00000090 6B EE 3L F2 A9 E4 35 F2z 6B EE 55 F2 A9 E4 35 F2 ké:o@&50keUo8E50
0000000 6B EE 63 Fz BB E4 35 F2z L3 E4 34 F2 63 E4 35 F2 k8ho»&50 A400450
000000BO 6B EE 6B F2 A9 E4 35 F2z 6B EE 64 FZ BF E4 35 F2 keéko®&Sok&jds &S50
000000CO 6B EE 6F F2 A9 E4 35 F2z 52 69 63 68 A3 E4 35 F2 keéoo®&5oRich 450
000000DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 oueeuvennennnnn.

https://virtualconsoles.com/online-emulators/dos/

C:s\>notepad .exe

This program cannot be run in DOS mode.

Page = 43

https://virtualconsoles.com/online-emulators/dos/

NT Header

IMAGE_NT_HEADERS32 structure

12/04/2018 « 2 minutes to read

Represents the PE header format.

Syntax

C++ |:ECopy

typedef struct _IMAGE_NT_HEADERS {
DWORD Signature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER32 OptionalHeader;

} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

Members
Signature

A 4-byte signature identifying the file as a PE image. The bytes are "PE\O\O".
FileHeader

An IMAGE FILE HEADER structure that specifies the file header.

OptionalHeader

An IMAGE OPTIONAL HEADER structure that specifies the optional file header.

https://docs.microsoft.com/en-
us/windows/desktop/api/winnt/

Page = 44

NT Header

& NOTEPAD.EXE

Offset(h) 00 01 02 03 04 05 06 O7 08 09 04 OB OC OD OE OF Decoded text
FE..L...£0°J....

OOO0O00ED & 45 00 > 01 03 00 A3 ©3 EO o0 do oo
Oo0o0oFo oo Qo EQ0 00 OF 01 OB 07 04 00 78 00
oooo0l100 LE 00 o0 00 Q00 0o 9D 73 00 o0 10 00
ooooo0110 o0 00 OO 00 OO OO0 O1 ao oo O A
Ooo001z0 5 00 O1 05 00 01 00O 04 OO 00 o0 OO0 0o

ooo00130 40 01 oo 04 00 OO 33 30 oO1 2 00 0o s
l ooooo0140 oo o4 OO0 10 01 d0O 0O 0o 10 o0 10 00
oo000is0 o0 Qo 10 00 Q00 Qo OO0 Qo oo oo
i 0oooo01e0 1 76 00 00 C& 00 00 OO0 OO0 EO OO0 58 589 00
ooooo017v0o o0 oo OO0 OO0 OO OO OO OO oo oo
oooo0is0 OO0 00 Q00 00 00 00 OO 50 13 00 7 oo
ooooo01=20 o0 oo OO0 OO0 OO OO OO ool oo oo oo
oooool1a0 oo Qo o0 OO0 00 00 AS 15 00 400 oo
| oooooieo oo Qo o0 00 00 00 OO0 10 oo 438 03 00
ooooo01co o0 oo OO OO0 OO OO OO OO oo oo oo
¢ Qooooino oo Qo el niaEe) 2E V4 65 T3 T4 OO0 OO0 OO0 Lext...

1 O
=
-

(.
[
]|

0
[}
=
[N}
[
L]

(|
(]}
ol
=
’ =]
i

—
_
s

—
(]
=

1
]
o]

Page = 45

Section Header

DOS MZ Header

Section Table

.code Executable, read
.data Non-Executable, read/write
.resource Non-Executable, read

Page = 46

Section Header

IMAGE_SECTION_HEADER structure

12/04/2018 + 4 minutes to read

Represents the image section header format.

Syntax

C+ [DCopy

typedef struct _IMAGE_SECTION_HEADER {
BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
union {
DWORD PhysicalAddress;
DWORD, VirtualSize;
} Misc;
DWORD| VirtualAddress;
DWORD| SizeOfRawData;
DWORD| PointerloRawData;
DWORD -PUImterTORE LOCALLoNS;
DWORD PointerToLinenumbers;
WORD NumberOfRelocations;
WORD NumberOfLinenumbers;
DWORD| Characteristics;
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

Section Header

VirtualSize

VirtualAddress

SizeOfRaw Data

PointerToRawData

Characteristics

The total size of the
section when loaded into
memory, in bytes.

The address of the first
byte of the section when
loaded into memory (RVA)

The size of the section
data on disk, in bytes.

The address of the first

byte of the section on
disk.

The characteristics of the
image.

https://docs.microsoft.com/en-

us/windows/desktop/api/winnt/ns-winnt-
_Image_section_header

Page = 48

Notepad.exe

Fill M
Offset i U Offset
00000000 DOS header DOS header 01000000

00000040 DOS stub DOS stub 01000040

000000E0 NT header

000001D8 Section header (.text)
00000200 Section header (.data)
00000228 Section header (.rsrc)

00000400 \
7800 Section (.text)

so0 Section (.data)

8400 Section (.rsrc)

NT header 010000E0

Section header (.text) 010001D8
Section header (.data) 01000200

Section header (.rsrc) 01000228

01001000

Section (text) o

00007C00

00008400

01009000

Section (.data) 1Bas

00010800

0100B000

Section (.rsrc) gaiq

01014000

Section Header

ooooo1po

OOOD01ED EISERraraEln
QO0001F0 oo oo
OO000Z00 EoE-T Sk
Qooooz 10 08 00
ooaoozz0 oo oo
Q0000z30 39 00
ooaooz 40 a0 oo

Page = 49

(]|
(]|
T
(]|
(]|
(]|
ao

(]|
(]|
61
(]|
40
(]|
ao

10
ao
oo

oo
EO
Qo

ao
ao
oo
ao
O
ao
Qo

oo
oo
oo
oo
oo

T4
(]|
1E
(]|

=
ol

=]

-1 O
(.

IE:
oo
20
oo
oo

5.3
ao
40

ao
(e
ao
=1
ao
(]|
o4
m|n]

Inspecting PE Header Information in Linux

import pefile
import sys

malware_file = sys.argv[1]
pe = pefile.PE(malware_file)
for section in pe.sections:
print "Name: %s VirtualSize: %s VirtualAddr: %s SizeofRawData: %s PointerToRawData: %s" %
(section.Name, hex(section.Misc_VirtualSize), hex(section.VirtualAddress), section.SizeOfRawData, section.PointerToRawData)

root@localhost python display sections.py a99c01d5748blbfd203fcl763e6612e8

Name: .text VirtualSize: 0x7378 VirtualAddr: 0x1000 SizeofRawData: 29696 PointerToRawData: 1024
Name: .rdata VirtualSize: 0x261c VirtualAddr: 0x9000 SizeofRawData: 10240 PointerToRawData: 30720
Name: .data VirtualSize: 0x2cac VirtualAddr: 0xc000 SizeofRawData: 3584 PointerToRawData: 40960
Name: .rsrc VirtualSize: 0x1b4 VirtualAddr: OxfO00 SizeofRawData: 512 PointerToRawData: 44544

Page = 50

Inspecting PE Header Information

I:1--.,. PEview - C:AWINDOWSINOTEPAD. EXE
Fil= Wiew Go Help

A L I EMER RS

1 MOTERPAD EXE ~ pFile Data Description “alue
IMAGE_DOS HEADER 0oooa108 2E 74 B5 78 Mame text
M=-D05 Stub Pragram oooootDc 74 00 00 00

= IMAGE_NT_HEADERS= oaooo1 o O00o0y748 Wirtual Size
Signature Ooooo1E4 Oooo1o00 RvA
IMAGE_FILE_HEADE 000001 ES 00007800 Size of Raw Data
IMAGE_OPTIOMAL | aoooo1EC 00000400 Fainter to Raw Data

IMAGE_SECTION _HEAI 000001 Fo 00000000 Fainter to Relocations
IMAGE_SECTION_HEAI 000001 F 4 00000000 Pointer to Line Mumbers

IMAGE SECTION HEAI Q00001 Fa aaoa Mumber of Relocations

= SECTION text aooooT FA, Qoo Murmber of Line Mumbers
IMPORT Address Tat aooootFo BOODODZD Characteristics
IMAGE DEBLUG DIR 00000020 IMAGE SCN_CNT _CODE
IMAGE_LOAD CORMF 20000000 IMAGE_SCMN_MEM _EXECUTE
IMAGE _DEBUG_TYF 40000000 IMAGE_SCHN_MEM READ
IMPORT Directary Ta
IMPORT Mame Table
IMPORT Hints/Mame:

SECTION .data
= SECTION rsrc
IMAGE RESOURCE
MAGE RESOURCE
IMAGE RESOURCE
IMAGE RESOURCE
IMAGE RESOURCE
£ b £

Wiewing IMAGE_SECTION_HEADER. .text

Inspecting file imports with pefile library

import pefile
import sys

malware_file = sys.argv[1]
pe = pefile.PE(malware_file)
if hasattr(pe, 'DIRECTORY_ENTRY_IMPORT'):
for entry pe.DIRECTORY_ENTRY_IMPORT:
print "%s" % entry.dll

for imp entry.imports:
if imp.name !=
print "\t % (imp.name)
else:
print "\tord(%s)" % (str(imp.ordinal))
print “\n"

Inspecting file export with pefile library

import pefile
import sys

malware_file = sys.argv[1]
pe = pefile.PE(malware_file)
if hasattr(pe, 'DIRECTORY_ENTRY_EXPORT'):
for exp pe.DIRECTORY_ENTRY_EXPORT.symbols:

print "%s'" % exp.name

Page = 53

Inspecting PE Header Information in Linux

import pefile
import sys

malware_file = sys.argv[1]
pe = pefile.PE(malware_file)
for section in pe.sections:
print "Name: %s VirtualSize: %s VirtualAddr: %s SizeofRawData: %s PointerToRawData: %s" %
(section.Name, hex(section.Misc_VirtualSize), hex(section.VirtualAddress), section.SizeOfRawData, section.PointerToRawData)

root@localhost python display sections.py a99c01d5748blbfd203fcl763e6612e8

Name: .text VirtualSize: 0x7378 VirtualAddr: 0x1000 SizeofRawData: 29696 PointerToRawData: 1024
Name: .rdata VirtualSize: 0x261c VirtualAddr: 0x9000 SizeofRawData: 10240 PointerToRawData: 30720
Name: .data VirtualSize: 0x2cac VirtualAddr: 0xc000 SizeofRawData: 3584 PointerToRawData: 40960
Name: .rsrc VirtualSize: 0x1b4 VirtualAddr: OxfO00 SizeofRawData: 512 PointerToRawData: 44544

Page = 54

Inspecting PE Header Information

I:1--.,. PEview - C:AWINDOWSINOTEPAD. EXE
Fil= Wiew Go Help

A L I EMER RS

1 MOTERPAD EXE ~ pFile Data Description “alue
IMAGE_DOS HEADER 0oooa108 2E 74 B5 78 Mame text
M=-D05 Stub Pragram oooootDc 74 00 00 00

= IMAGE_NT_HEADERS= oaooo1 o O00o0y748 Wirtual Size
Signature Ooooo1E4 Oooo1o00 RvA
IMAGE_FILE_HEADE 000001 ES 00007800 Size of Raw Data
IMAGE_OPTIOMAL | aoooo1EC 00000400 Fainter to Raw Data

IMAGE_SECTION _HEAI 000001 Fo 00000000 Fainter to Relocations
IMAGE_SECTION_HEAI 000001 F 4 00000000 Pointer to Line Mumbers

IMAGE SECTION HEAI Q00001 Fa aaoa Mumber of Relocations

= SECTION text aooooT FA, Qoo Murmber of Line Mumbers
IMPORT Address Tat aooootFo BOODODZD Characteristics
IMAGE DEBLUG DIR 00000020 IMAGE SCN_CNT _CODE
IMAGE_LOAD CORMF 20000000 IMAGE_SCMN_MEM _EXECUTE
IMAGE _DEBUG_TYF 40000000 IMAGE_SCHN_MEM READ
IMPORT Directary Ta
IMPORT Mame Table
IMPORT Hints/Mame:

SECTION .data
= SECTION rsrc
IMAGE RESOURCE
MAGE RESOURCE
IMAGE RESOURCE
IMAGE RESOURCE
IMAGE RESOURCE
£ b £

Wiewing IMAGE_SECTION_HEADER. .text

Anti-virus: How they actually work

« Nowadays AV scans our system on real-time basis.

« Information is analyzed based on the origin of the information
 |.e. source of information.

« Operates differently depending upon source of information.

eeeeeeeeee

Page = 56

Anti-virus working from top level view.

Operation) Operation

If the file is found malicious then the information will not be
copied onto the destination location.
(Here destination in our case is HD)

Wi
Page = 57

One of the two possibilities takes place

« When the data is found to be legitimate, the scanner forwards that
data to the destination location.

 When virus is detected then a warning is sent to Ul for user s
action. Interface may vary.

Page = 58

Traditional Antivirus Methods

Page = 59

Source System

—

AV scanner,
scanning
information on
real time.

J

Interpretation of

Information

W

Scanning of
Information

\ 4

Disinfection

.9

Alert

Destination System

Hash-based blacklisting

Hash-based blacklisting

— Simple and efficient method

— Requires maintaining a large virus signature database
— Always reactive, not proactive

— Sensitive to virus variations

— Fast update process for new samples

Page = 60

AV detection techniques(Scan - Engines)

« Signature Based detection (also sometimes called as “string
based” detection)

« AV maintains a dictionary of the signatures of known Viruses,
malwares, spywares etc.

« This dictionary is stored at client side and is usually in binary.
« Next-generation signature based detection
« Disadvantage?

Antivirus
> I::
Software
Computer System

10235 230140

Virus Dictionary

20001 g0124

Page = 61 Signature based Antivirus

Page = 62

t..L.*This progr
am cannot be +un
in DOS mode. ...

Ba41BLO 8

Page = 63

BECHO OFF..:REP.
-DEL %1..IF EXIS
T %1 L0T0D REP..D
EL #%8...CHMD fC
ST RsT L L%s\Y
u.cmd. .. RUHDLL32
T S-a LS -1 4
u.tmp...Globaly%
(T R4 | I A.

Signhature-based detection

Signhature-based detection

— Based on file offset and unique binary code

— Can detect new variants if the signature is well chosen
— One-to-many detection for the same virus family

— Requires experienced analysts

— Possibility of false positives/negatives

— Time-consuming update process

Page = 64

Heuristic based Detection

« Used to detect new, unknown viruses in your system that has not
yet been identified.

« Based on the piece-by-piece examination of a virus.

« Looks for the sequence of instruction that differentiate the virus from
‘normal programs’

- Disadvantage?

Page = 65

AV bypassing technigues

This are those
techniques that the
hackers and
crackers already
knew.

e Binders and packers
e Using splitter
e Code conversion from EXE to

These are: client side script
e Code obfuscation
e Using metasploit framework
e Code or DLL Injection

Page = 66 inl :
!lm

Packed and Obfuscated Malware

« Malware writers often use packing or obfuscation to make their
files more difficult to detect or analyze.

 Obfuscated programs are ones whose execution the malware
author has attempted to hide.

« Packed programs are a subset of obfuscated programs in which the
malicious program is compressed and cannot be analyzed.

« Both techniques will severely limit your attempts to statically analyze
the malware.

Start

i Start
\ Wrapper Program

Original Executable

(Strings and other Packed Executable
information visible)
(Strings and other
information not
visible)

Page = 67

Packers and Cryptos

» ~ upx -o myhack packed.dll myhack.dll
Ultimate Packer for eXecutables
Copyright (C) 1996 - 2018
UPX 3.95 Markus Oberhumer, Laszlo Molnar & John Reiser Aug 26th 2018
File size | Format

75264 39424 52.38% win32/pe myhack packed.dll

Packed 1 file.

Page = 68

Packed and Obfuscated Malware

% PEID v0.95

File: | Cworkimyhack. dl M)
Entrypaint: | 00001412 EP Section: | ,text =]
File Offset: | 00000512 First Bytes: |55,8B,EC,E3 | = |
Linker Info: | 14,16 Subsystem: |Win32 GUI B
Mothing Found *
Mulki Scan Task Wiewer Dptions Abouk | Exit
v Skay on kop 3 | -

Page = 69

Binders and Packers

 Binders

VORKING OF A BINDER
File Size = ZOEEB File #A
File C
— QKB
EXE Binder
~- — ZOKB
The Malicious code binary is being
ODriginal Malicious Code written to the End-0f-File(EOF) of
Binar the EXE Binder.
Y —— E55EB
File Size = 35 KB File B

Page = 70

Splitting the File and Code Obfuscation

« These are those programs that split a single files into no. of
small sized files.
?. |

simpleee simplelexe simplelexe simpledexe simpledexe simplelee simplelexe simpledexe simpleexe simpleeve simplelexe simplelexe simpleexe simpleexe simplelexe
01 02 03 Q04 005 (06 0 Q0 009 (10 (1 2 013 (14

smplelexe simplelee simpleexe simpleexe simplel.exe
(15 (16 Y} 01§ (19

« One may change some code into some small chunked file to evade
AV detection and again join it and scan it to check whether AV flags
it malicious or not. A trial and Error method..

Page= 71

Behavioral based detection

« Just observes how the program executes, rather than merely
emulating its execution.

 |dentify malware by looking for suspicious behavior.

« Disadvantage?

Page = 72

Sandboxing Based detection

« Whatis “sandbox” ?

* |solate the files which are to be scanned and monitors their
activity.

Page = 73

Heuristic Engines

» Heuristic engines are basically statistical and rule based analyze
mechanisms.

* Their main purpose is detecting new generation(previously unknown)
viruses by categorizing and giving threat/risk grades to code fragments
according to predefined criteria.

» Heuristic engines are the most advanced part of AV products they use
significant amount of rules and criteria.

» Since no anti virus company releases blueprints or documentation about
their heuristic engines all known selective criteria's about their threat/risk
grading policy are found with trial and error.

Page = 74

Dynamic Heuristic Analysis

Unknown Sample Sandbox Log File Malware Fingerprint
01011e*
PE fll e contains C:\, D:\, E:\ monitoring the behavior malware expert use the
And windows, of the unknow sample, log file to find the key
System32 Folder and logging the function features and add it to
system file call, parameters, etc... the malware database

Page = 75

Some of the known rules about threat grading

— Decryption loop detected

— Reads active computer name

— Reads the cryptographic machine GUID

— Contacts random domain names

— Reads the windows installation date

— Drops executable files

— Found potential IP address in binary memory

— Modifies proxy settings

— Installs hooks/patches the running process

— Injects into explorer

— Injects into remote process

— Queries process information

— Sets the process error mode to suppress error box
— Unusual entrophy

— Possibly checks for the presence of antivirus engine

— Monitors specific registry key for changes

Page = 76

Some of the known rules about threat grading

— Contains ability to elevate privileges

— Modifies software policy settings

— Reads the system/video BIOS version

— Endpoint in PE header is within an uncommon section
— Creates guarded memory regions

— Spawns a lot of processes

— Tries to sleep for a long time

— Unusual sections

— Reads windows product id

— Contains decryption loop

— Contains ability to start/interact device drivers
— Contains ability to block user input

Page = 77

Static Heuristic Analysis Fast, easy Cannot handle shell, code
obfuscation

Dynamic Heuristic It can “reveal” the May attacked by the anti-

Analysis malware VM technology

Page = 78

Port 445: Overview, Use Cases, and Security Risks

1.What is Port 4457

1. TCP/UDP port used by the Server Message Block (SMB) protocol

2. Facilitates file, printer, and named pipe sharing in Windows networks
2.Port 445 Use Cases

1. File and printer sharing between Windows devices

2. Remote administration of network devices

3. Communication with Active Directory services
3.Security Risks

1. Vulnerable to unauthorized access if not properly secured

2. Exploitation of SMB vulnerabilities (e.g., WannaCry and NotPetya ransomware attacks)

3. Potential for information leakage if SMB traffic is not encrypted
4.Mitigating Security Risks

1. Use firewalls to restrict access to Port 445

2. Disable SMBv1 and use SMBv2 or SMBv3 with encryption

3. Keep systems updated with the latest security patches

Page = 79

Understanding IPC$ in Windows Networking

1.What is IPCS?

1. IPCS stands for Inter-Process Communication (IPC) Share

2. Itis a hidden administrative share in Windows operating systems
2.IPCS Basics

1. Facilitates communication between processes on the same or different computers

2. Implemented using the Server Message Block (SMB) protocol
3.Role of IPCS in Windows Networking

1. Enables remote administration and management of resources

2. Provides a mechanism for authentication and authorization
4.Security Considerations

1. IPCS can potentially be exploited by attackers

2. Ensure proper security measures to mitigate risks

Page = 80

Page = 81

	Slide 1
	Slide 2: Worm vs a virus
	Slide 3: +
	Slide 4
	Slide 5
	Slide 6: Preface
	Slide 7: Preface
	Slide 8: Preface
	Slide 9: Introduction
	Slide 10: Brief overview of CVE-2008-4250 vulnerability
	Slide 11: Differences between "." and ".."
	Slide 12: Differences between "." and ".."
	Slide 13: Differences between "." and ".."
	Slide 14: Differences between "." and ".."
	Slide 15: Differences between "." and ".."
	Slide 16: Differences between "." and ".."
	Slide 17: Programming the idea of simplifying directory structure
	Slide 18: Programming the idea of simplifying directory structure
	Slide 19: Conclusion
	Slide 20: Static Analysis
	Slide 21: Static Analysis
	Slide 22: Static Analysis
	Slide 23
	Slide 24: Fingerprinting the Malware -- Cryptographic Hash
	Slide 25: Fingerprinting the Malware
	Slide 26: Tools and Python code
	Slide 27: Strings
	Slide 28: Static analysis (myhack.dll)
	Slide 29: Static analysis (myhack.dll)
	Slide 30: strings in Linux and flare-floss
	Slide 31: Packed and Obfuscated Malware
	Slide 32: Packed and Obfuscated Malware
	Slide 33: Packers and Cryptos
	Slide 34: Portable Executable (PE) file
	Slide 35: Portable Executable (PE) file
	Slide 36: PE Example – Notepad.exe
	Slide 37: Load PE file (Notepad.exe) into Memory
	Slide 38
	Slide 39: VA & RVA
	Slide 40: DOS Header
	Slide 41: DOS Header
	Slide 42: DOS Header
	Slide 43: DOS stub
	Slide 44: NT Header
	Slide 45: NT Header
	Slide 46: Section Header
	Slide 47: Section Header
	Slide 48: Section Header
	Slide 49: Section Header
	Slide 50: Inspecting PE Header Information in Linux
	Slide 51: Inspecting PE Header Information
	Slide 52: Inspecting file imports with pefile library
	Slide 53: Inspecting file export with pefile library
	Slide 54: Inspecting PE Header Information in Linux
	Slide 55: Inspecting PE Header Information
	Slide 56: Anti-virus: How they actually work
	Slide 57: Anti-virus working from top level view.
	Slide 58
	Slide 59: Traditional Antivirus Methods
	Slide 60: Hash-based blacklisting
	Slide 61: AV detection techniques(Scan - Engines)
	Slide 62
	Slide 63
	Slide 64: Signature-based detection
	Slide 65: Heuristic based Detection
	Slide 66: AV bypassing techniques
	Slide 67: Packed and Obfuscated Malware
	Slide 68: Packers and Cryptos
	Slide 69: Packed and Obfuscated Malware
	Slide 70: Binders and Packers
	Slide 71: Splitting the File and Code Obfuscation
	Slide 72: Behavioral based detection
	Slide 73: Sandboxing Based detection
	Slide 74: Heuristic Engines
	Slide 75: Dynamic Heuristic Analysis
	Slide 76: Some of the known rules about threat grading
	Slide 77: Some of the known rules about threat grading
	Slide 78
	Slide 79: Port 445: Overview, Use Cases, and Security Risks
	Slide 80: Understanding IPC$ in Windows Networking
	Slide 81

