
CSC 583 Advanced Topics in Computer Security
CVE-2006-3439 Stack Overflow

Si Chen (schen@wcupa.edu)

Class7

Page § 2

“Memory Corruption”

§ What is it?

Page § 3

“Memory Corruption”

§Modifying a binary’s memory in a way that was not intended

§Broad umbrella term for most of what the rest of this class will
be

§The vast majority of system-level exploits (real-world and
competition) involve memory corruption

Page § 4

Buffers

§ A buffer is defined as a limited, contiguously allocated set of memory. The
most common buffer in C is an array.

Page § 5

A novice C programmer mistake

This example shows how easy it is to read past the end
of a buffer; C provides no built-in protection.

Page § 6

Another C programmer mistake

Page § 7

Crash report

Page § 8

Page § 9

Stack Frame

Page § 10

Overflow.c

Page § 11

Overflow.c

Page § 12

Return Hijack

§ The return address will be stored on stack when calling a new function.
(EIP)

§ The local valuable will be store on the low address
§ If the variable is an array, and if we store too many data, it will cover the

return address which store on the high address.

Page § 13

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

New Return Address

Page § 14

Guessing Addresses

§ Typically you need the source code so you can estimate the address of
both the buffer and the return-address.

§ An estimate is often good enough! (more on this in a bit).

Page § 15

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

New Return Address – Hacked()

Page § 16

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

\x4d\x55\x55\x56

Page § 17

Common vulnerabilities and exposures (CVE)

§ CVE system:
• Standardized way of identifying and categorizing security vulnerabilities and exposures

• Maintained by The MITRE Corporation

• Funded by the US Department of Homeland Security

• Launched in September 1999

• Used by the Security Content Automation Protocol

• CVE IDs listed on Mitre's system and the US National Vulnerability Database

Page § 18

Why CVE-2006-3439?

We should often review past vulnerabilities, especially classic ones,
and review the ideas behind their vulnerability analysis, discovery,
and exploitation. This will often rekindle sparks of creativity in our
thinking and inspire us when researching new problems.
 -- a Hacker

Page § 19

Background: CVE-2006-3439

Link: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3439

https://learn.microsoft.com/en-us/security-
updates/Securitybulletins/2006/ms06-040?redirectedfrom=MSDN

Page § 20

CVE-2006-3439 Static Analysis

Page § 21

Use IDA to load NETAPI32.dll

target: sub_7517FC68

Try to press F5

Page § 22

CVE-2006-3439 Static Analysis

negative value à local variable

Page § 23

CVE-2006-3439 Static Analysis

Page § 24

CVE-2006-3439 Static Analysis

Page § 25

CVE-2006-3439 Static Analysis

Page § 26

CVE-2006-3439 Static Analysis

Page § 27

Exercise Questions

1.How can one identify the number of local variables and parameters within the
current function?

2.How can one determine the size of the buffer space allocated by the current
function?

3.What is the result of XORing a value with itself?

4.In which register is the return value of a function call generally stored?

5.What is the underlying principle of the comparison operation in cmp?

6.What do the jump instructions like jz, ja, etc., signify?

7.What are the rules for pushing function arguments onto the stack?

Page § 28

Let's pause here and take a moment to do two things. First, let's review the small
pieces of knowledge that we've covered up to this point. I've summarized them
below for your reference:

1.How to identify the number of local variables and parameters in a current
function.
2.How to view the size of the buffer space allocated for a current function.
3.What result is obtained by XORing a value with itself.
4.Where the return value of a function call is typically stored.
5.The principle behind the comparison operation "cmp".
6.What the "jz", "ja", and other jump instructions represent.
7.The rules for how function arguments are pushed onto the stack.

Page § 29

wcslen

Page § 30

Wide character

§ A wide character is a computer character datatype that generally has a
size greater than the traditional 8-bit character. The increased datatype
size allows for the use of larger coded character sets.

§ Early adoption of UCS-2 ("Unicode 1.0") led to common use of UTF-16 in
a number of platforms, most notably Microsoft Windows, .NET and Java.
In these systems, it is common to have a "wide character" (wchar_t in
C/C++; char in Java) type of 16-bits. These types do not always map
directly to one "character", as surrogate pairs are required to store the full
range of Unicode (1996, Unicode 2.0).

https://en.wikipedia.org/wiki/Wide_character

Page § 31

Check Cross-references

Page § 32

Page § 33

Page § 34

NetpwPathType()

Page § 35

Page § 36

Page § 37

Page § 38

Page § 39

Page § 40

Page § 41

Page § 42

Page § 43

Page § 44

