
CSC 600 Advanced Seminar

System Call & Shellcode & Stack Overflow

Si Chen (schen@wcupa.edu)

Class6

Page ▪ 2

System Call

Page ▪ 3

System Call

▪ A system call, sometimes referred to as a kernel call, is a request in

a Unix-like operating system made via a software interrupt by an active

process for a service performed by the kernel.

Page ▪ 4

System Call

▪ User code can be arbitrary

▪ User code cannot modify kernel memory

▪ The call mechanism switches code to kernel mode

Page ▪ 5

What is System Call?

▪ System resources (file, network, IO, device) may be accessed by multiple

applications at the same time, can cause confliction.

▪ Modern OS protect these resources.

▪ E.g. How to let a program to wait for a while?

100Mhz CPU -> 1s

1000Mhz CPU -> 0.1s

Use OS provide Timer

Page ▪ 6

What System Call?

▪ Let an application to access system resources.

▪ OS provide an interface (System call) for the application

▪ It usually use the technique called “interrupt vector”

– Linux use 0x80

– Windows use 0x2E

In system programming, an interrupt is a signal to the processor emitted by

hardware or software indicating an event that needs immediate attention. An

interrupt alerts the processor to a high-priority condition requiring the interruption

of the current code the processor is executing. The processor responds by

suspending its current activities, saving its state, and executing a function called

an interrupt handler (or an interrupt service routine, ISR) to deal with the event.

This interruption is temporary, and, after the interrupt handler finishes, the

processor resumes normal activities.[1] There are two types of interrupts:

hardware interrupts and software interrupts. – From Wikipedia

https://en.wikipedia.org/wiki/System_programming
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Function_(programming)
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Personal_computer_hardware
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/User_(computing)

Page ▪ 7

CPU Interrupt

User Mode Execution Interruption occurred

Interrupt Vector Table Interrupt Handler

Next instruction

User Mode

Kernel Mode

Page ▪ 9

fwrite() path in both Linux and Windows

fwrite()

write()

interrupt 0x80

sys_write()

Kernel

fwrite()

write()

NtWriteFile()

Interrupt 0x2e

IoWriteFile()

Kernel

Application

C

Run

Time

Library

API (Windows)

Kernel

./program program.exe

Libcmt.lib

msvcr90.dll

Kernel32.dll

NTDLL.dll

NtosKrnl.exe

libc.a

libc.so

libc.a

libc.so

./vlinuxz

Page ▪ 10

Linux System Call

http://syscalls.kernelgrok.com

http://syscalls.kernelgrok.com/

Page ▪ 11

Page ▪ 12

Trace by strace (linux)

▪ strace /bin/echo AAAAA

Page ▪ 13

Example: Hello World

helloworld.asm

Quick review:
•DB - Define Byte. 8 bits
•DW - Define Word. Generally 2 bytes on a
typical x86 32-bit system
•DD - Define double word. Generally 4 bytes on
a typical x86 32-bit system

From x86 assembly tutorial,

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Page ▪ 14

Some Useful System Call

▪ open/read/write

▪ mmap/mprotect

– mmap:use to allocate an executable area

– mprotect: disable data executable prevention

▪ execve

– execve(char* path, char* argv[], char* envp[]);

– path: path to the executable file

– argv: arguments (char* pointer array)

– envp: environment variable (char* pointer array)

Page ▪ 15

Syscall Summary

▪Linux Syscall sorta use fastcall

– specific syscall # is loaded into eax

– arguments for call are placed in different registers

– int 0x80 executes call to syscall()

– CPU switches to kernel mode

– each syscall has a unique, static number

Page ▪ 16

Shellcode

Shellcode is defined as a set of instructions injected and then executed by an
exploited program. Shellcode is used to directly manipulate registers and the
functionality of a exploited program.

Page ▪ 17

Crafting Shellcode (the small program)

Example: Hello World

hello.asm

Page ▪ 18

Crafting Shellcode (the small program)

Example: Hello (hello.asm)

To compile it use nasm:

Use objdump to get the shellcode bytes:

Page ▪ 19

Crafting Shellcode (the small program)

Extracting the bytes gives us the shellcode:

\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\x

b2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f

Page ▪ 20

Test Shellcode (test.c)

Page ▪ 21

Shellcode

▪ Taking some shellcode from Aleph One's 'Smashing the Stack for

Fun and Profit'

shellcode =

("\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" +

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" +

"\x80\xe8\xdc\xff\xff\xff/bin/sh")

Page ▪ 22

“Memory Corruption”

▪ What is it?

Page ▪ 23

“Memory Corruption”

▪Modifying a binary’s memory in a way that was not intended

▪Broad umbrella term for most of what the rest of this class will

be

▪The vast majority of system-level exploits (real-world and

competition) involve memory corruption

Page ▪ 24

Buffers

▪ A buffer is defined as a limited, contiguously allocated set of memory. The

most common buffer in C is an array.

Page ▪ 25

A novice C programmer mistake

This example shows how easy it is to read past the end

of a buffer; C provides no built-in protection.

Page ▪ 26

Another C programmer mistake

Page ▪ 27

Crash report

Page ▪ 28

Page ▪ 29

Stack Frame

Page ▪ 30

Overflow.c

Page ▪ 31

Protection: ASLR, DEP, Stack Protector

Shutdown protection

-fno-stack-protector Shutdown stack protector

-z execstack Shutdown DEP(Data Execution Prevention)

Shutdown ASLR (Address space layout randomization)

Page ▪ 32

Overflow.c

Page ▪ 33

Return Hijack

▪ The return address will be stored on stack when calling a new function.

(EIP)

▪ The local valuable will be store on the low address

▪ If the variable is an array, and if we store too many data, it will cover the

return address which store on the high address.

Page ▪ 34

From Crash to Hack

▪ If the input is larger than the size of the array, normally, the program will

crash.

▪ Need to craft special data to exploit this vulnerability.

– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA

AAAA

BBBB

BBBB

CCCC

CCCC

DDDD

New Return Address

Page ▪ 35

Print ABCD

Page ▪ 36

Print 100A(s)

Page ▪ 37

BASH refresher

Page ▪ 38

gdb io

Page ▪ 39

Guessing Addresses

▪ Typically you need the source code so you can estimate the address of

both the buffer and the return-address.

▪ An estimate is often good enough! (more on this in a bit).

Page ▪ 40

From Crash to Hack

▪ If the input is larger than the size of the array, normally, the program will

crash.

▪ Need to craft special data to exploit this vulnerability.

– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA

AAAA

BBBB

BBBB

CCCC

CCCC

DDDD

New Return Address – Hacked()

Page ▪ 41

From Crash to Hack

▪ If the input is larger than the size of the array, normally, the program will

crash.

▪ Need to craft special data to exploit this vulnerability.

– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA

AAAA

BBBB

BBBB

CCCC

CCCC

DDDD

\x4d\x55\x55\x56

Page ▪ 42

Figure out the Length of Dummy Characters

▪ pattern -- Generate, search, or write a cyclic pattern to memory

▪ What it does is generate a De Brujin Sequence of a specified length.

▪ A De Brujin Sequence is a sequence that has unique n-length

subsequences at any of its points. In our case, we are interested in

unique 4 length subsequences since we will be dealing with 32 bit

registers.

▪ This is especially useful for finding offsets at which data gets written into

registers.

https://en.wikipedia.org/wiki/De_Bruijn_sequence

Page ▪ 43

Figure out the Length of Dummy Characters with PEDA

Page ▪ 44

Jump to Shellcode

▪ When the function is done it will jump to whatever address is on the stack.

▪ We put some code in the buffer and set the return address to point to

it!

Small Program

New Return Address

Page ▪ 45

Crafting Shellcode (the small program)

Extracting the bytes gives us the shellcode:

\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\x

b2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f

Page ▪ 46

Finding a possible place to inject shellcode

Small Program

New Return Address

\xeb\x19\x31\xc0\x31\xdb\x31\xd

2\x31\xc9\xb0\x04\xb3\x01\x59\x

b2\x05\xcd\x80\x31\xc0\xb0\x01\

x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf

f\x68\x65\x6c\x6c\x6f

Use GDB to figure out

the memory address of

the beginning of the

buffer

Page ▪ 47

Find Return Address

Page ▪ 48

Find Return Address

0xffffd4fe

Page ▪ 49

NOP slide

Page ▪ 50

NOP slide

Small Program

New Return Address

\xeb\x19\x31\xc0\x31\xdb\x31\xd

2\x31\xc9\xb0\x04\xb3\x01\x59\x

b2\x05\xcd\x80\x31\xc0\xb0\x01\

x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf

f\x68\x65\x6c\x6c\x6f

\x90\x90\x90\x90\x90\x90\x
90\x90\x90\x90\x90\x90\x9
0\x90\x90\x90\x90

Page ▪ 51

Update Python Script

Page ▪ 52

Run Exploit Script and attach GDB-PEDA to Program PID

Page ▪ 53

Classic Exploitation Illustration

Page ▪ 54

Classic Exploitation Illustration

Page ▪ 55

Classic Exploitation Illustration

Page ▪ 56

Classic Exploitation Illustration

Page ▪ 57

Classic Exploitation Illustration

Page ▪ 58

Classic Exploitation Technique

1. Call hacked() (lab1)

2. Write our own shellcode to launch shell (lab2)

Page ▪ 59

Compile the code

gcc -m32 –fno-stack-protector –zexecstack –o ./overflow2 ./overflow2.c

Page ▪ 60

No eXecute (NX)

▪ -zexecstack

▪ Also known as Data Execution Prevention (DEP), this protection marks

writable regions of memory as non-executable.

▪ This prevents the processor from executing in these marked regions of

memory.

Page ▪ 61

No eXecute (NX)

After the function returns, the program will set the instruction pointer
to 0xbfff0000 and attempt to execute the instructions at that address.
However, since the region of memory mapped at that address has no
execution permissions, the program will crash.

Page ▪ 62

No eXecute (NX)

Thus, the attacker's exploit is thwarted.

Page ▪ 63

Compile the code

gcc -m32 –fno-stack-protector –zexecstack –o ./overflow2 ./overflow2.c

Page ▪ 64

Q & A

	Slide 1
	Slide 2
	Slide 3: System Call
	Slide 4: System Call
	Slide 5: What is System Call?
	Slide 6: What System Call?
	Slide 7: CPU Interrupt
	Slide 9: fwrite() path in both Linux and Windows
	Slide 10: Linux System Call
	Slide 11
	Slide 12: Trace by strace (linux)
	Slide 13: Example: Hello World
	Slide 14: Some Useful System Call
	Slide 15: Syscall Summary
	Slide 16
	Slide 17: Crafting Shellcode (the small program)
	Slide 18: Crafting Shellcode (the small program)
	Slide 19: Crafting Shellcode (the small program)
	Slide 20: Test Shellcode (test.c)
	Slide 21: Shellcode
	Slide 22: “Memory Corruption”
	Slide 23: “Memory Corruption”
	Slide 24: Buffers
	Slide 25: A novice C programmer mistake
	Slide 26: Another C programmer mistake
	Slide 27: Crash report
	Slide 28
	Slide 29: Stack Frame
	Slide 30: Overflow.c
	Slide 31: Protection: ASLR, DEP, Stack Protector
	Slide 32: Overflow.c
	Slide 33: Return Hijack
	Slide 34: From Crash to Hack
	Slide 35: Print ABCD
	Slide 36: Print 100A(s)
	Slide 37: BASH refresher
	Slide 38: gdb io
	Slide 39: Guessing Addresses
	Slide 40: From Crash to Hack
	Slide 41: From Crash to Hack
	Slide 42: Figure out the Length of Dummy Characters
	Slide 43: Figure out the Length of Dummy Characters with PEDA
	Slide 44: Jump to Shellcode
	Slide 45: Crafting Shellcode (the small program)
	Slide 46: Finding a possible place to inject shellcode
	Slide 47: Find Return Address
	Slide 48: Find Return Address
	Slide 49: NOP slide
	Slide 50: NOP slide
	Slide 51: Update Python Script
	Slide 52: Run Exploit Script and attach GDB-PEDA to Program PID
	Slide 53: Classic Exploitation Illustration
	Slide 54: Classic Exploitation Illustration
	Slide 55: Classic Exploitation Illustration
	Slide 56: Classic Exploitation Illustration
	Slide 57: Classic Exploitation Illustration
	Slide 58: Classic Exploitation Technique
	Slide 59: Compile the code
	Slide 60: No eXecute (NX)
	Slide 61: No eXecute (NX)
	Slide 62: No eXecute (NX)
	Slide 63: Compile the code
	Slide 64

