CSC 600 Advanced Seminar

|A-32 Register & Byte Ordering
Si Chen (schen@wcupa.edu)

|A-32 Register

Intel IA-32 Processor

" Intel uses 1A-32 to refer to Pentium processor family, in order to
distinguish them from their 64-bit architectures.

: processor
Pentium® 1995

. e ;989 processor
@ i 1992
- 386 - 1986

80286 - 1982

8086 - 1978

@
Q
£
®
£
S

=
)
Q.

1995

Page = 3

Register Set

* There are three types of registers:
— general-purpose data registers,
— segment registers,

— status and control registers.

General-pumose registers
31 0

Status and control registers
31 0

Page = 4

Segment registers
15 0

EAX

EBX

ECX

EDX

ESI

EDI

EBP
ESP

EFLAGS
EIP

CS
DS
55
ES
FS
GS

General-purpose Registers

* The eight 32-bit general-purpose data registers are used to hold
operands for logical and arithmetic operations, operands for address
calculations and memory pointers

Generalpurpose registers 16-bit 32-bit
31 16 15 87 0

AH AL AX EAX

4 Bytes BH BL BX EBX
CH CL CH ECX

DH DL DX EDX

BP ESI

3| EDI

DI EBP

SP ESP

Page=5

— EAX—Accumulator for operands and results data.

— EBX—Pointer to data in the DS segment.

— ECX—Counter for string and loop operations.
— EDX—I/O pointer.

1.

W

Page =6

We use these four registers when we perform arithmetic
operations (ADD, SUB, XOR, OR) -- store constant or variable’s
value.

Some assembly operations (MUL, DIV, LODS) directly operate
these register and altered the value when finished.

ECX is used for loop count = decrease 1 after each loop

EAX is used for storing the return value of a function (Win32 API)

» ESI—Pointer to data in the segment pointed to by the DS register; source
pointer for string operations.

» EDI—Pointer to data (or destination) in the segment pointed to by the ES
register; destination pointer for string operations.

= EBP—Pointer to data on the stack.
= ESP—Stack pointer.

\

PUSH, POP, CALL, RET

Page =7

Segment Registers

* There are six segment registers that hold 16-bit segment selectors. A
segment selector is a special pointer that identifies a segment in memory.

— CS: code segment register
— SS: stack segment register
— DS, ES, FS, GS: data segment registers

ACCESS LIMIT
¥ 1
BASE ADDRESS -~ CODE
ACCESS LIMIT
BASE ADDRESS - STACK
CS
sSS | _ ACCESS | LIMIT
DS | BASE ADDRESS - DATA
ES :
FS { 2 ACCESS 7 LIMIT A e
GS { BASE ADDRESS
- ACCESS LIMI] = DATA
BASE ADDRESS
Page = 8 | ACCESS | LIMIT = DATA
BASE ADDRESS

31 0

Status and Control Registers EFLAGS

EIP

The 32-bit EFLAGS register contains a group of status flags, a control
flag, and a group of system flags.

M302028 2720252423 222120191817 16151413121110 8 8 7 68 5 4 3

%]
[=]

o

1]

n:un:u:unnnnn'jl

AlVIR
(1]
= C F

n—
ML
1
me

F|F

_'
roo-

X 1D Flag (1D4 |

X Virtwal Interrupt Pending (VIP)

Virtual Interrupt Flag (VIF) !
Alignment Check (AC)
Virtual-8086 Mode (VM)
Resume Flag (RF}
MNested Task (NT)
I/O Privilege Level (10PL)
Overflow Flag (OF H
Direction Flag (DF}
Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF) I
Auwxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF) —]

JCC

i1

H W (AL D) D00 e OO L0 5 x

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set fo values previously read.

Page =9

EFLAGS Register

Status and Control Registers

3302028272025 2423222120181817 1815141312110 2 8 7 6 5 4 3 2 1 O

Changeto‘1_’if: ololelalolalelololalt |ty |2 v]"[a]n 3 olo|1|T|5|z]g|alg|P] 4|2
« Signed integer overflow “FEEMTITTE UL T
« Change in MSB (Most Significant Bit) |

X 1D Flag (104

X Virtual Interrupt Pending (VIP)

X Virtual Interrupt Flag (VIF) !

X Alignment Check (AC)
X Virtual-8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT)
X /O Privilege Level (I0PL)
S Overflow Flag (OFH
C Durection Flag (DF}
X Interrupt Enable Flag (IF)
X Trap Flag (TF)

5 Sign Flag (SF)

S Zero Flag (ZF) |
S

S

S

S

C

X

Change to ‘1’ if:
e« Calculation result is O

Auxiliary Carry Flag (AF)
Panty Flag (PF)
Carry Flag (CF) —

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

Change to ‘1’ if:

* unsigned integer overflow Reserved bit positions. DO NOT USE.
Always set to values previously read.

EFLAGS Register

Page = 10

31 0

Status and Control Registers CLAGS

EIP Register (Instruction Pointer)

The EIP register (or instruction pointer) can also be called "program
counter."”

It contains the offset in the current code segment for the next instruction to
be executed.

It is advanced from one instruction boundary to the next in straight-line code

or it is moved ahead or backwards by a number of instructions when
executing JMP, Jcc, CALL, RET, and IRET instructions.

Page= 11

Byte Order

Little endian

» |[A-32 processors use "little endian” as their byte order. This means that
the bytes of a word are numbered starting from the least significant byte

and that the least significant bit starts of a word starts in the least
significant byte.

Highest Data Structure

Address 31 24 23 16 15 8 7 0 -=— Bit offset
28

24

20

16

12

8

4

Byte 3 Byte 2 Byte 1 ByteO | O hgﬁ?esés

Byte Offset

Figure 1-1. Bit and Byte Order

Page = 13

Byte Order

High address

Address
Little-endian

Big-endian

Memory content

Page = 14

Low address

B

7

Eyte O

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Eyte G

Byte 7

Byte 7

Byte 6

Byte 5

Byle 4

Byte 3

Byte 2

Byte 1

Byte 0

Ox11

Ox22

Ox33

Ox&d

Ox55

Ox66

Qx77

Ox88

64 bit value on Little-endian

Ox8877665544332211

G4 bit value on Big-endian

Ox1122334455667788

LittleEndian.cpp

1 #include "windows.h"

BYTE b = 0x12;

WORD w = 0x1234;

DWORD dw = 0x12345678;
str[] = "abcde";

main(argc, xargv[])

BYTE 1b = b;

WORD 1w = w;

DWORD ldw = dw;
1str = str;

0;

Page = 15

X86 ASM

» Move reg/mem value to reg/mem
— mov A, B is "Move B to A" (A=B)
— Same data size

mov eax, 0x1337
mov bx, ax
mov [esp+4], bl

Page = 17

MOVZX | MOVSX

» From small register to large register
» Zero-extend (MOVZX) / sign-extend (MOVSX)

= Example: movzx ebx, al

When copy a smaller value into a larger
destination, MOVZX instruction fills (extends) the
upper half of the destination with zeros

0 10001111 ‘ Source (bl)

00000000 | 10001111 | Destination (ax)

MOVSX fills the upper half of the destination with
a copy of the source operand's sign bit

A 0001111 Source (bl)

7
p
y
4

Page = 18

11111111 10001111 Destination (ax)

More About Memory Access

" mov ebx, [esp + eax * 4] Intel
* mov (%esp, %eax, 4), Yoebx AT&T

* mov BYTE [eax], OxOf
You must indicate the data size: BYTE/WORD/DWORD

Page = 19

ADD / SUB

= ADD / SUB
= Normallly "reg +=reg" or "reg += imm"
» Data size should be equal

— ADD eax, ebx

— sub eax, 123

— sub eax, BL ; lllegal

Page = 20

INC / DEC

= inc, dec — Increment, Decrement

* The inc instruction increments the contents of its operand by one.
The dec instruction decrements the contents of its operand by one.

= Syntax
InCc <reg>
IncC <mem>
dec <reg>
dec <mem>

= Examples
DEC EAX — subtract one from the contents of EAX.
INC DWORD PTR [var] — add one to the 32-bit integer stored at
location var

Page = 21

SHL / SHR / SAR

= Shift logical left / right
= Shift arithmetic right

= Common usage: SHL eax, 2 (when calculate memory address)

mov eax, O0xh oo fo o] 10|10
”_/.:':,/J w/’:‘;’//
hl ea 1 1 (0|00

Page = 22

Jump

= Unconditional jump: jmp

= Conditional jump: je/jne
and ja/jael/jb/jbeljgligeljl/jle ...

= Sometime with "cmp A, B” -- compare these two values and set eflags
= Conditional jump is decided by some of the eflags bits.

ref -—

: | Unsigned and Signed Jumps.
The JMP Instruction) netgned and Signed Jumps
| i

* JMP (jump) instruction causes an unconditional jump

* Syntaxis: " = ' Cinxlitian Usignad Soyad
JMP destination/target_label
* JMP can be used to get around the range restriction [126/127 byte] . i same-< d=t B i
* Flags —no change | | sce <=dest JB= IE
TOP: | | scaes=dett INEJND INEJIND
TOP t I
; the loop body contains so many instructions . soaRe= dst JEJSH JESDH
; body of the loop, say 2 instructions ; thatlabel TOP is out of range for JNZ. Solution is-
DEC CX ; decrement counter DEC X sore=—ckt JAE =
INZ TOP ; keep loopingif CX >0 INZ BOTTOM I
MOV AX, BX IMP EXIT sae = d=t JIA JG
BOTTOM:
JMP TOP FEn
EXIT:
MOV AX, BX]
ey j :
: 6
1

Page = 23

Jump

= ja/jae/jbl/jbe are unsigned comparison

= jg/jgeljl/jle are sighed comparison

S
. lUnsigned and Signed Jumps.
-
| Cinxdlition Uisigyad Sioyad
. | sourue = det JIB J
soate ==k JE= JIE
- | soure =kt JNEONAD JNEJIND
| p— JEQ2 EQ
. souate==—cbq JAE =
I souue = dest JA | &
=

' I|
Page = 24 | 6
! 1

CMP

= cmp — Compare

» Compare the values of the two specified operands, setting the condition
codes in the machine status word appropriately. This instruction Is
equivalent to the sub instruction, except the result of the subtraction Is
discarded instead of replacing the first operand. Syntax
cmp <reg>,<reg>
cmp <reg>,<mem>
cmp <mem>,<reg>
cmp <reg>,<con>

= Example
cmp DWORD PTR [var], 10
jeq loop

= |[f the 4 bytes stored at location var are equal to the 4-byte integer
constant 10, jump to the location labeled loop.

Page = 25

Page = 26

	Slide 1
	Slide 2
	Slide 3: Intel IA-32 Processor
	Slide 4: Register Set
	Slide 5: General-purpose Registers
	Slide 6: Other uses…
	Slide 7: Other uses…
	Slide 8: Segment Registers
	Slide 9: Status and Control Registers
	Slide 10: Status and Control Registers
	Slide 11: Status and Control Registers
	Slide 12
	Slide 13: Little endian
	Slide 14: Byte Order
	Slide 15: LittleEndian.cpp
	Slide 16
	Slide 17: MOV
	Slide 18: MOVZX / MOVSX
	Slide 19: More About Memory Access
	Slide 20: ADD / SUB
	Slide 21: INC / DEC
	Slide 22: SHL / SHR / SAR
	Slide 23: Jump
	Slide 24: Jump
	Slide 25: CMP
	Slide 26

