
CSC 416/565:
DESIGN AND CONSTRUCTION 
OF COMPILERS

West Chester University
Dr. Richard Burns
Fall 2023



Code 
Generation
Programming Assignment #5 
Introduction



Role of These Slides

• These slides are to supplement the README.md project description 
in the GH repo starter code, as well as the lectures
• Consult all resources and ask questions on discord
• See these slides for a visual presentation of some of the subtleties in 

the assignment



Overall Task

• You’ll be implementing the code generation back-end into your compiler
• We haven’t talked about optimization yet, so after covering that topic we could (in a 

longer semester) come back to this programming assignment and incorporate that in

• This project involves:
1. Running .ram programs through your front-end

• Recall that the last phase of the front-end is semantic analysis, which builds an AST that you 
can traverse using visitors. This phase also constructed a symbol table for your .ram source 
program.

2. Emit semantically and syntactically correct assembly instructions for your .ram
program

• The README.md lists tasks in more detail



Project Structure

There are some new files in this starter code, including:
1. A complete front-end for the Ram23 grammar specification

• … so if you didn’t finish Programming Assignments #4, everyone is starting from the 
same spot for this assignment

• I will also not test your code on .ram programs that should generate front-end 
compile time or back-end run time errors

2. An updated driver (compilers.Ram23Compiler)
3. Starter code for your code generation visitor 

(visitors.CodeGenerator)
4. Test programs (test/java/compilers/test_programs)
5. I also bundled the MARS4_5.jar MIPS simulator into a lib folder in 

the project (not the best SE solution, but it saves you a couple of mvn 
commands that you would otherwise have needed to perform)



Testing Programs

• In the test_programs directory, there are many .ram programs 
that are referenced in the README.md
• Also included are .correct outputs that would be the executed 

output if the .ram programs are run
• Your task is to have your code generator automatically create .s 

assembly code for these .ram programs
• (Assembly code is often saved with the extension .asm or .s or .a)

• The testing framework runs the MIPS simulator MARS on your code 
to assemble and run your generated .s file; output is saved in a 
.s.output file. If this output matches .correct, it will pass the 
test case



Code you will be modifying

• 99% of your new code will be in 
visitor/CodeGenerator.java

• When you get to Task #8 in the README.md, you might also make a 
very minor addition to symboltable/RamVariable.java



An initial 
experiment

• Perform a mvn clean, and javacc:jaccc to generate the 
RamParser.class

• Also perform a mvn compile

• See src/main/java/compilers/Ram23Compiler.java
• Notice that the Ram23Compiler is now extended on a Line 50 call to a 

visitor that performs the code generation once the SA task is finished
• The code generation visitor takes two arguments:

1. Where to emit/print the assembly code
2. The symbol table that was created during the SA task



Remember to test your code on single files 
using the driver



Test Suites

• Performing a mvn test will run all uncommented .ram programs 
in test/java/compilers/CodegenTest.java
• The big method used for testing here is testRamProgram() 

which times out after 20 seconds
• You do not have to edit testRamProgram()! This is what is going 

on there:

Run front end on 
.ram program (Lines 

58-67)

Call code generation 
visitor; generate 

assembly code; save 
as .s file (Lines 69-

86)

Run MIPS simulator 
on .s file; saving 

output as .s.output 
(Lines 88-108)

Judge whether 
.s.output is correct 

(Lines 110-117)



Compute

• Running all of the tests takes a good bit of compute as you’ll see.
• I recommend testing your visitor on individual files using the driver 

until the very end!

• Before starting, make sure that you 
re-read Appendix A and our course 
references, and that you are on the 
way to being comfortable with 
assembly and MIPS



Things to watch out for…

• If the test suite fails/crashes for a program with an error message that 
.s.output is empty or cannot be read, the most likely cause is 
that your visitor’s generated .s file has an issue.
• Try opening this .s file manually in the MIPS and assemble it
• Were you able to load the file? Were there any flagged syntactic errors?
• Try running the file. Did it generate output and successfully terminate?


