CSC 416/565:
ND

Semantic
Analysis

Programming Assignment #4
Introduction

Role of These Slides

* These slides are to supplement the README .md project description
in the GH repo starter code, as well as the lectures

* Consult all resources and ask questions on discord

* See these slides for a visual presentation of some of the subtleties in
the assignment

Overall Task

* You'll be implementing semantic analysis into your compiler

* Involves:
1. Symbol table construction
2. Type checking

e The README .md lists 8 tasks in more detail

Project Structure

* There are some new files in this starter code, including

* A99% complete RamSemantic.j7 file, for the Ram23 grammar
specification
* ...so if you didn’t finish Programming Assignments #2 or #3, everyone is
starting from the same spot for this assignment

RamSemantic. jj

* This grammar files that I've given you in the starter code already
includes semantic actions, so that JavaCC will automatically build an
Abstract Syntax Tree (our intermediate representation), which we’ll

traverse to build the symbol table and perform type checking

* |’ve also augmented the grammar so that precedence rules are
appropriate captured (e.g. * multiplication is deeper than + addition,
and && occurs before | |).

* Result: creation of more non-terminals than what you had in Programming
Assignment #3 (e.g. OrExp () —see next slide)

Intelli) may automatically hide these semantic actions by default

RamSemantic.jj RamSemantic.jj

v Exp OrExp() : v Exp OrExp(Q) :
Al
{ Exp el, e2;
el = AndExp()
¢
el = AndExp()
e2 = AndExp() (

e2 = AndExp()
{ el = new Or(el, e2); }

)E

{ return el; }

Remember that semantic actions are Java code that is run in parallel when this production is used. So, the OrExp ()
non-terminal returns an Exp object, with Java code interspersed on Lines 348, 350, 358, 361.

* The referenced Or constructor on Line 358 RamSemantic.jj
is referring to the class
Java.syntaxtree.Or

* The syntaxtree classes are imported
into RamSemantic.jJ onlinell, and Exp el, e2;
will also be imported into the generated
RamParser.class when the javacc
action is run by Maven

v Exp OrExp(Q) :

el = AndExp()
(

v

v Ujava e2 = AndExp()

> [© compilers

> [3 symboltable

v [2] syntaxtree
And
ArrayAssign

RamSemantic.jj { el = new Or(el, e2); }

options {) %
JAVA_UNICODE_ESCAPE = true;
DEBUG_PARSER = false;

{ return el; }
STATIC = false;

ArrayLength
ArrayLookup
Assign
Block

PARSER_BEGIN(RamParser)

package compilers;
BooleanType

Call

ClassDecl

import java.io.FileNotFoundException;
import visitor.x;

import syntaxtree.x;
ClassDeclExtends

) Ram23Compiler.java

parser. Q; 9 A2 A1

[] [] []
An initial e
java.io.InputStream is = new java.io.FileInputStream((args[01));

parser = new (is) ;

experiment

root.accept(new ASTPrintVisitor());

System.out.println("Program lexed and parsed successfully");

System.out.println("Abstract syntax tree built");

* Performamvn clean,and javacc:jaccc to generate the
RamParser.class

* See src/main/java/compilers/Ram23Compiler.java

* Notice that the Ram23Compiler is now extended on Lines 22-46 to
do additional tasks once the Parser finishes

* The parser returns the constructed AST for a source program on Line 20,
which we’ll traverse (using the Visitor design pattern) to perform other tasks

Feel free to Comment Out Additional Lines

* | suggest commenting out the symbol table and type

checking calls initially (Lines 31-46) and just experiment
with the Visitors

* Explore the following classes:

* java.visitor.ASTPrintVisitor (called on Line 22)
* java.visitor.JavaPrintVisitor (called on Line 23)

* These visitors will perform the tasks of “pretty printing”
the generated AST and exporting the AST as a legal
.Java program

* So, Line 23 is the big last step in a full Ram23->Java conversion
* Really cool!

(D src
v D main

v java

> [compilers

> (] symboltable

> [2 syntaxtree

v [2] visitor
ASTPrintVisitor
BuildSymbolTableVi
DepthFirstVisitor

JavaPrintVisitor

Set the run configuration to use
Ram23Compiler on asingle file

Run 'Ram23Compiler.main()’

Debug 'Ram23Compiler.main()’ Name: Ram23Compiler

(@ Run ‘Ram23Compiler.main()' with Coverage

Modify Run Configuration... Build and run

F else 1

java.io.InputStream is = new ja java 17 v compilers.Ram23Compiler

parser = new
RORE o src/test/java/compilers/test_programs/pass/passl.ram23

System.out.println("Program Llex

Output Example

| N p Ut d rg src/test/java/compilers/test programs/pass/HelloWorld.ram23

Program(

MainClass(Identifier(HelloWorld), Identifier(a), Println(IntegerLiteral(1)))
ClassDeclList(

))

Output of ASTPrintVisitor

class HelloWorld {

Output of JavaPrintVisitor public static void main (String [] a) {

System.out.println(1)
}

}

Program lexed and parsed successfully
Abstract syntax tree built

Process finished with exit code 0

(it looks like my JavaPrintVisitor has a bug and is missing the emit of a ; at the end of the Printin AST!)

Before proceeding, make sure you are on your way to getting
comfortable with how and why these Visitors work and do their job.

Next Steps

* At this point, you are ready do start looking at and thinking about
Tasks #1-4 in the README . md, in which you’ll:

* [take a look at these; I've already written these classes and they are 99%
complete]
* java.visitor.BuildSymbolTable
* java.symboltable.Table
* Java.symboltable.RamClass

 [create and write these yourself while consulting Task #4 of README.md]
* Java.symboltable.RamMethod
* Java.symboltable.RamVariable

Uncomment symbol table lines from
Ram23Compiler

Ram23Compiler.java

BuildSymbolTableVisitor v = new BuildSymbolTableVisitor();
root.accept(v);
System.out.println("Symbol Table built");

System.out.println("Begin print of symbol table");

System.out.println(v.getSymTab());
System.out.println("End print of symbol table");

* Lines 32-33 construct the symbol table (Task #4)
* Line 38 “pretty prints” the created symbol table (Task #5)

Task #6: Type Checking

 See README .md for a description of the type checking phase of this
assignment.

* Appropriate implement a new Visitor
(java.visitor.TypeCheckVisitor) which takes the symbol
table as an argument in its constructor (Line 43)

* Why? -- The type checker needs to know which variables are declared and
what their types are.

root.accept(new TypeCheckVisitor(v.getSymTab()));

if (v.getSymTab().anyErrors())
throw new ("SA error detected");

System.out.println("Semantic Analysis: Type Checking complete");

