
CSC 416/565:
DESIGN AND 
CONSTRUCTION 
OF COMPILERS

West Chester University
Dr. Richard Burns
Fall 2023



The Scanner / Lexer
Programming Assignment #2 Introduction



Role of These Slides

• These slides are to supplement the README.md project description 
in the GH repo starter code, as well as the lecture, and the 
introduction of FLEX in our course textbook
• Consult all resources and ask questions on discord
• See these slides for a visual presentation of the Maven infrastructure



JavaCC

• We’ll be creating a Lexical Specification for our Ram23 programming 
language and will be automatically generating a scanner (and 
eventually a parser, too) using the JavaCC tool
• JavaCC is based on Flex

• JavaCC Resources:
• JavaCC Tutorial
• JavaCC and Maven

• You don’t have to manually download JavaCC as I already included it 
in our Maven pom.xml project specification

https://javacc.github.io/javacc/
https://www.cin.ufpe.br/~in1007/transparencias/MaterialApoio/javacc-tutorial.pdf
https://mvnrepository.com/artifact/net.java.dev.javacc/javacc


JavaCC Specification

• Starts with an optional list of options followed by a Java compilation 
unit enclose between PARSER_BEGIN(name) and 
PARSER_END(name)
• This will be the name of the generated parser

• Next is regular expression productions for the lexical specification
• TOKEN is used to specify that the matched string should be transformed into 

a token 
• SKIP is used to specify that the matched string should be thrown away

• In the scanner, a single grammar production (w/ the Kleene closure) is 
specified to allow the generated scanner to recognize the tokens





RamGrammar.jj

• Located in src/main/javacc/

• This is the only file that you will be editing!





Next Step

• Use JavaCC to generate a scanner 
using the lexical specification that you 
entered in RamGrammar.jj
• Run the javacc:javacc Maven 

goal
• This will create generated .java files 

that will be saved into 
target/generated-
sources/javacc/compilers



• If you peek at these files, you can 
tell how they were machine 
generated and are tough to read.
• Do not edit these files.
• You can delete them with by 

running the clean Maven 
lifecycle.



Test your generated scanner

• See src/main/java/compilers/Ram23Compiler.java



Set the arg of a file to use to test the scanner

• Modify the run configuration and enter the name of a .ram23 file 
to pass in



What the Completed Scanner Should Output:



Notice the location of the test programs

• There are 5 ram23 programs that should PASS and 4 ram23 
programs that should FAIL
• See test/java/compilers/test_programs



Run all 9 tests

• The Maven test lifecycle will run all 9 test cases, automatically 
calling JUnit and the test/java/compilers/PassTest and 
FailTest classes



Individual Tests in JUnit

• Your GH Actions when you push your repo will run these 9 tests 
individually. You don’t have to look at this code, but this is what 
PassTestSingle.java and FailTestSingle.java is 
managing.


