CSC 416/565:
ND

The Scanner / Lexer

Programming Assignment #2 Introduction

Role of These Slides

* These slides are to supplement the README .md project description
in the GH repo starter code, as well as the lecture, and the
introduction of FLEX in our course textbook

* Consult all resources and ask questions on discord
* See these slides for a visual presentation of the Maven infrastructure

JavaCC

* We’ll be creating a Lexical Specification for our Ram23 programming
language and will be automatically generating a scanner (and
eventually a parser, too) using the JavaCC tool

* JavaCCis based on Flex

* JavaCC Resources:
e JavaCC Tutorial
e JavaCC and Maven

* You don’t have to manually download JavaCC as | already included it
in our Maven pom.xml project specification

https://javacc.github.io/javacc/
https://www.cin.ufpe.br/~in1007/transparencias/MaterialApoio/javacc-tutorial.pdf
https://mvnrepository.com/artifact/net.java.dev.javacc/javacc

JavaCC Specification

e Starts with an optional list of options followed by a Java compilation
unit enclose between PARSER BEGIN (name) and
PARSER END (name)

* This will be the name of the generated parser

* Next is regular expression productions for the lexical specification

* TOKEN is used to specify that the matched string should be transformed into
a token

* SKIP is used to specify that the matched string should be thrown away

* In the scanner, a single grammar production (w/ the Kleene closure) is
specified to allow the generated scanner to recognize the tokens

PARSER BEGIN (MyParser)
class MyParser {}
PARSER END (MyParser)

/* For the regular expressions on the right, the token on the left will be returned: */
TOKEN : {
< JEz: PafE" >

| < #DIGIT: ["O"-"9"] >

| < ID: ["a"—"z"] (["a"—"z"]|<DIGIT>)* >

| < NUM: (<DIGIT>)+ >

| < REAL: ((<DIGIT>)+ "." (<DIGIT>)*) |

((<DIGIT>)* "," (DIGITs)+)3

}

/* The regular expressions here will be skipped during lexical analysis: */
SKIP : {
o W (["a"— "Z"]) * (n\nn | n\ru | n\r\nu) S
| non
| " \ £
I n \n n
}

/* If we have a substring that does not match any of the regular expressions in TOKEN or SKIP,
JavaCC will automatically throw an error. */
void Start ()

{}

{ (<IF> | <ID> | <NUM> | <REAL>)* }

Project v

Ra m G ra m m a r.JJ v [proj2-scanner-startercode [scanner]

> [.github
> [D.idea
v [Dsrc

v 3 main

* Located in src/main/javacc/

v java

v [J compilers

* This is the only file that you will be editing! Ram23Compiler

v [Djavacc

RamGrammar.jj

Ram23Compiler.java RamGrammar.jj

TOKEN : {

< IF: "if" >
| < ELSE: "else" >
| < LPAREN: "(" >

void Goal()
{}
{

(RamToken()) %

Ram23Compiler v

Next Step B

SRS+ B0 X R @

v (3 Plugins
- > I clean

* Use JavaCC to generate a scanner S Cxrrn

using the lexical specification that you o

entered in RamGrammar. jJj e

. . i javacc:help
* Run the JavaccC: JavaccCc Maven 3 avacciavace
2 javacc:jjdoc
g O a | 2 javacc:jjtree
. . . . ctJ:avacc:j:jtree-javacc

* This will create generated . java files olovcelty

that will be saved into > Gresources

target/generated-
sources/javacc/compilers

Project Files v

v [~/Library/Mobile Documents/com~apple~CloudDocs

> [.github
> Disre * If you peek at these files, you can
v O tell how they were machine
’ g generated and are tough to read.
O * Do not edit these files.
O
. D * You can delete them with by
i running the clean Maven
lifecycle.

scanner

v [Z Lifecycle
£33 clean
£33 validate

Test your generated scanner

* See src/main/java/compilers/Ram23Compiler.java

public static|void main(String[] args) throws

if (args.length == 0) {
parser = new System.in) ;
parser. Q;
} else {
java.io.InputStream is = new java.io.FileInputStream(
parser = new (is) ;
parser. QO;

System.out.println("Program lexed successfully");

Set the arg of a file to use to test the scanner

* Modify the run configuration and enter the name of a . ram23 file

to pass in

Run '‘Ram23Compiler.main()’

Debug 'Ram23Compiler.main()'

(2 Run ‘Ram23Compiler.main()' with Coverage

Modify Run Configuration...
F ELSE 1
java.io.InputStream is = new ja
parser = new

parser. (1

System.out.println("Program lex:

NETNER Ram23Compiler

Build and run

java 17 v compilers.Ram23Compiler

src/test/java/compilers/test_programs/pass/passl.ram23

What the Completed Scanner Should Output:

/Library/Java/JavaVirtualMachines/jdk-17.jdk/Contents/Home/bin
Kind: 35 line 1, column 1 - line 1, column 5 : class

Kind: 55 1line column 7 - line 1, column 11 : Testl

Kind: 13 line column 13 - line 1, column 13 : {

Kind: 45 1line column 5 - 1line 2, column 10 : public
Kind: 47 1line column 12 - 1line 2, column 17 : static
Kind: 53 1line column 19 - line 2, column 22 : void
Kind: 43 column 24 - line 2, column 27 : main

Notice the location of the test programs

* There are 5 ram23 programs that should PASS and 4 ram?2 3
programs that should FAIL

*See test/java/compilers/test programs

Run all 9 tests

* The Maven test lifecycle will run all 9 test cases, automatically
calling JUnit and the test/java/compilers/PassTest and
FailTest classes

scannher

v [3 Lifecycle
£33 clean
33 validate

£33 compile
= new Prin 33 test

Individual Tests in JUnit

* Your GH Actions when you push your repo will run these 9 tests
individually. You don’t have to look at this code, but this is what
PassTestSingle.java and FailTestSingle.java is
managing.

