
CSC 416/565:
DESIGN AND
CONSTRUCTION
OF COMPILERS

West Chester University
Dr. Richard Burns
Spring 2023

Data structures for tree
languages

Programming Assignment #1 Introduction

“Straight Line Program Language” will have statements and
expressions.
• no loops or if conditionals

Will specify language using a grammar.

A Grammar has:
• terminals (such as id)
• non-terminals (such as Stm)

(CompoundStm) Stm -> Stm ; Stm
(AssignStm) Stm -> id := Exp
(PrintStm) Stm -> print(ExpList)
(IdExp) Exp -> id
(NumExp) Exp -> num
(OpExp) Exp -> Exp Binop Exp

(Plus) Binop -> +
 Binop -> -
 Binop -> x
 Binop -> /

(PairExpList) ExpList -> Exp , ExpList
(LastExpList) ExpList -> Exp

(EseqExp) Exp -> (Stm, Exp) // Expression Sequence

Expression Sequences

What is the answer?

In general:
• Statements can have side-effects, but they don’t return a value.
• Expressions return a value.

int a = 1, b = 2;
int i;
i = (a += 2, a + b);

Example Source Program in Tree Language

What is the output?

a := 5 + 3 ; b := (print(a, a-1), 10 * a) ; print(b)

Programming Assignment #1:
Write an Interpreter for the Tree Language
• Going to skip scanning and parsing and will go right into an IR using

a tree data structure
• Although our grammar is ambiguous, this is not a problem for this

assignment.

Ambiguous?
• There are two valid parse tree derivations using our grammar for the

expression: 4 * 3 + 5

Appel, Figure 1.4

public abstract class Stm {}

public class CompoundStm extends Stm {
 public Stm stm1, stm2;
 public CompoundStm(Stm s1, Stm s2) {stm1=s1; stm2=s2;}
}

public class AssignStm extends Stm {
 public String id;
 public Exp exp;
 public AssignStm(String i, Exp e) {id=i; exp=e;}
}

public class PrintStm extends Stm {
 public ExpList exps;
 public PrintStm(ExpList e) {exps=e;}
}

public abstract class Exp {}

public class IdExp extends Exp {
 public String id;
 public IdExp(String i) {id=i;}
}

public class NumExp extends Exp {
 public int num;
 public NumExp(int n) {num=n;}
}

public class OpExp extends Exp {
 public Exp left, right;
 public int oper;
 final public static int Plus=1,Minus=2,Times=3,Div=4;
 public OpExp(Exp l, int o, Exp r) {left=l; oper=o; right=r;}
}

public class EseqExp extends Exp {
 public Stm stm;
 public Exp exp;
 public EseqExp(Stm s, Exp e) {stm=s; exp=e;}
}

public abstract class ExpList {}

public class PairExpList extends ExpList {
 public Exp head;
 public ExpList tail;
 public PairExpList(Exp h, ExpList t) {head=h; tail=t;}
}

public class LastExpList extends ExpList {
 public Exp head;
 public LastExpList(Exp h) {head=h;}
}

The Task:

Write single line programs, like example on page 12 [Appel].

Code two functions:
1. int maxargs (Stm s) - returns the maximum number of args in any print

statement
2. void interp (Stm s) - interprets the program

Two ways to program:
1. Functionally using Java's instanceof operator
2. OO, by adding methods to each class and utilizing polymorphism

Strategies for implementing the interpreter found on [Appel], page 13.

