CSC 416/565:
ND

Data structures for tree
languages

Programming Assignment #1 Introduction

“Straight Line Program Language” will have statements and
expressions.

* no loops or if conditionals

Will specify language using a grammar.

A Grammar has:
* terminals (such as 1d)
* non-terminals (such as Stm)

CompoundStm) Stm -> Stm ; Stm

(
(AssignStm) Stm -> id := Exp
(PrintStm) Stm -> print (ExpList)
(IdExp) Exp -> id
(NumExp) Exp —-> num
(OpExp) Exp -> Exp Binop Exp
(Plus) Binop -> +

Binop -> -

Binop -> x

Binop -> /

(PairExpList) ExpList -> Exp , ExpList
(LastExpList) ExpList -> Exp

(EsegExp) Exp -> (Stm, Exp) // Expression Sequence

Expression Seqguences

What is the answer?

In general:

e Statements can have side-effects, but they don’t return a value.

* Expressions return a value.

Example Source Program in Tree Language

a := 5+ 3 ,; b := (print(a, a-1), 10 * a) ; print(b)

What is the output?

Programming Assignment #1.:
Write an Interpreter for the Tree Language

* Going to skip scanning and parsing and will go right into an IR using
a tree data structure

* Although our grammar is ambiguous, this is not a problem for this
assignment.

Ambiguous?

* There are two valid parse tree derivations using our grammar for the
expression: 4 * 3 + 5

Appel, Figure 1.4

Q
I
ul

CompoundStm

//\

AssignStm

R

a OpExp

T

NumExp Plus NumExp
I I
5 3

+ 3 ; b

CompoundStm
AssignStm PrintStm
RN |
b Esquxp LaStEi(leSt
/ \ IdExp
PrintStm OpExp |
b

PairEJI(pList Numﬁimx
/ \ | P | ’

IdExp LastExpList 10 a

I I
a OpExp

e N

IdExp Minus NumExp

I |
a 1

(print (a , a - 1) , 10 * a) ; print

(b))

public abstract class Stm {}

public class CompoundStm extends Stm {
public Stm stml, stm2;
public CompoundStm(Stm sl, Stm s2) {stml=sl; stm2=s2;}

public class AssignStm extends Stm {
public String id;
public Exp exp;
public AssignStm(String 1, Exp e) {id=1; exp=e;}

public class PrintStm extends Stm {
public ExpList exps;
public PrintStm(ExpList e) {exps=e;}

public abstract class Exp {}

public class IdExp extends Exp {
public String id;
public IdExp(String i) {id=1;}

public class NumExp extends Exp {
public int num;
public NumExp (int n) {num=n; }

public class OpExp extends Exp {
public Exp left, right;
public int oper;
final public static int Plus=1,Minus=2,Times=3,Div=4;
public OpExp (Exp 1, int o, Exp r) {left=1l; oper=o; right=r;}

public class EsegExp extends Exp {
public Stm stm;
public Exp exp;
public EsegExp (Stm s, Exp e) {stm=s; exp=e;}

public abstract class ExpList {}

public class PairExpList extends ExpList {
public Exp head;
public ExpList tail;
public PairExpList (Exp h, ExpList t) {head=h; tail=t;}

public class LastExpList extends ExpList {
public Exp head;
public LastExpList (Exp h) {head=h;}

The Task:

Write single line programs, like example on page 12 [Appel].

Code two functions:

1. int maxargs (Stm s) -returnsthe maximum number of args in any print
statement

2. volid interp (Stm s) -interpretsthe program

Two ways to program:
1. Functionally using Java's instanceof operator
2. 00, by adding methods to each class and utilizing polymorphism

Strategies for implementing the interpreter found on [Appel], page 13.

