
CSC 416/565:
DESIGN AND 

CONSTRUCTION 
OF COMPILERS
West Chester University

Dr. Richard Burns
Fall 2023



Register Allocation

Motivation: intermediate code uses unlimited number of registers to 
hold temporary values
• Simplifies optimization, code generation
• Complicates final translation to assembly
The task: rewrite intermediate code to assign the many temporaries to 
the small number of machine registers
• Assign multiple temporaries to each register
• Cannot change program behavior!



Example

Assume a and e are dead after use.

Prompt: how many registers are needed?

a := c+d
e := a+b
f := e-1



Golden Rule

Temporaries t1 and t2 can share the same register if at most one 
of t1 or t2 is alive at any point in the program.

• If t1 and t2 are live at the same time, they cannot share a register
• Need to determine the live variables at every point in the program.
• How can we do this?

Use liveness analysis.



Example: Control Flow Graph

1. What are the live variables at each program point?
2. What registers to assign?





Graph Coloring

Can solve register assignment using graph coloring algorithm.
(There are linear time approximation algorithms despite graph coloring 

being an NP-complete problem.)



Graph Coloring

Big Idea: Construct a “register” interference graph
• Undirected graph
• Node for each temporary
• Edge between t1 and t2 if they are live simultaneously at same point in 

the program (and cannot be assigned to the same register)



Example: Interference Graph

• b and c cannot be in same register
• b and d can be in same register

a

b

c

d

e

f



• Find a coloring of the graph, such that no pair of 
nodes connected by an edge is assigned the same 
color.
• Use as few colors as possible?
• Terminology: a graph is k-colorable if it has a 

coloring with k colors

In register assignment problem: colors = registers
• Assign colors (registers) to graph nodes 

(temporaries)
• Let k = # of machine registers
• If interference graph if k-colorable, then there is a 

register assignment that uses no more than k
registers.

a

b

c

d

e

f



The interference graph is 4-colorable.

a

b

c

d

e

f

BLUE = r1
RED = r2
GREEN = r3
YELLOW = r4



Coloring By Simplification

Phases: (1) build, (2) simplify, (3) spill, (4) select
1. Build the interference graph
2. Simplify (simple heuristic):
• pick a node t with fewer than k neighbors, where k is the # of machine 

registers
• eliminate node t and its edges
• observation: if the resulting graph is k-colorable, then so is the original graph

• (a free color can always be found for t since it has at most k-1 neighbors)
• put t on a stack
• repeat until the graph is empty (each such simplification will decrease the 

degrees of the other nodes, leading to more opportunity for simplification)



Coloring By Simplification

Phases: (1) build, (2) simplify, (3) spill, (4) select
3. Spill - we get stuck, the heuristic fails
• more on this later

4. Select - we get to an empty graph
• assign colors to nodes on the stack
• start w/ last node added (top of the stack)
• pop stack, add node to graph, assign color to node that is different than 

neighbors' coloring
• (there must be a color for it because of the observation made during (2) simplify)



Simplification and Selection Example



Spilling

Spilling: occurs when the graph coloring heuristic fails to find a color 
(e.g. at some point all nodes in the graph have: degree ≥ k)
• Implication: cannot hold all values in registers.
• Some values are spilled to memory.



Example

• Try to find 3-coloring of the previous interference graph.
• Mark/pick a node as a candidate for spilling (potential spill node)
• Will represent it in memory, not registers, in program execution

• Try again to find a 3-coloring.



Spilling

• For actual spills, for some temporary f:
• allocate a memory location for f -- typically in current stack frame
• Step 1: rewrite program to fetch f from memory just before each use; 

and store it back after each definition
• e.g. store temporary f at memory location fa
• f := load fa // before each operation that reads f
• store f, fa // after every operation that writes f



Thus, a spilled temporary will turn into several new temporaries with tiny live ranges.



Spilling

• Step 2: Recompute liveness
• fi is live only between fi = load fa and the next instruction
• fi is live only between store fi, fa and the previous instruction

Observe: spilling reduces the live range of f
• And thus reduces its interferences
• Which results in fewer interference graph neighbors
• But new temporaries may interfere with other temporaries in the 

graph



Spilling

• Step 3: re-run “Simplify” step on rewritten program until graph 
coloring heuristic succeeds with no spills.

Example – New Interference Graph

How many registers are needed now?



Wrapping Up

• The trick part is deciding which temporary to spill.
• Any choice is “correct”, but some spills are more desirable than 

others.
• Possible heuristics:
• Spill temporaries with most conflicts
• Spill temporaries with few defs and uses
• Avoid spilling in inner loops


