
CSC 416/565:
DESIGN AND CONSTRUCTION

OF COMPILERS
West Chester University

Dr. Richard Burns
Fall 2023

Intermediate
Code/Language
Stepping back a bit from code generation.
What is an IL?
• A language between the source and target
• Provides an intermediate level of abstraction
1. More details than the source

• MiniJava/Ram23 has no notion of registers
• Optimization algorithms may depend on registers

2. Fewer details than the target
• IL doesn’t have all the details of a target machine
• Easier to re-translate IL to some other target

Compiler design my include a sequence of IL’s.

IL as ”High-level” Assembly

Very similar to the assembly code from the last few weeks.

Some notable differences:
• Unlimited number of registers
• IL opcodes corresponding directly to assembly opcodes
• More pseudoinstructions, like push

Example

Operands of IL instructions are registers or constants.

Cannot evaluate expression a + (b * c) directly.
Translated to IL:

t1 := b * c
t2 := a + t1

• Three-address code IL: every subexpression is given a name

• In Proj #5 code generation assignment, rather than use
temporaries/registers, we will exploit the stack.

a + (b * c)

t1 := b * c
t2 := a + t1

push b
push c
multiply
push a
add

Demo Project #5

Local Optimization

Compiler layout:

Lexical Analysis ⇒ Parsing ⇒ Semantic Analysis ⇒ Optimization ⇒ Code Generation

• In modern compilers, optimization phase is that largest and most complex.

Going to optimize after translation into IL:
• Exposes more optimization opportunities
• (we now have temporaries, not as high-level as AST)

• Q: Why not just optimize at the assembly language level?
• While this also exposes optimization opportunities, this is machine

dependent.
• Would have to re-implement optimizations when re-targeting to a different

machine.

Optimization Seeks to Improve

1. Execution time (most often)
2. Code size
3. Can also imagine optimizations for:
• Network messages sent
• Power
• Disk lookups
• etc.

Key Rule:

Optimization should not alter what program computes!

Types of Optimizations

1. Local optimizations: basic block level
2. “Global” optimizations: single procedure level using control-flow

graphs
3. Inter-procedural optimizations across method boundaries

Most compilers do many local optimizations and a few global
optimizations.

Some optimizations are not implemented by a compiler.
Why not?
1. If they’re hard to implement
2. Costly in compilation time
3. Have a low payoff
4. etc.

Basic Block

Sequence (grouping) of three-address instructions
Properties of basic blocks:
• Maximal sequence of instructions with

• no labels (except at first instruction)
• no jumps (except in last instruction)

• Always enter a basic block at the beginning and exit at the end.

Big Idea: execution of a basic block is completely predictable
• guaranteed to flow from the first statement in the block to the last

statement
• (furthermore, no way to jump into the middle of the block)

Example: Local Optimization with a Basic
Block

Prompt: is there a potential optimization?
• Change line 3 to w := 3 * y
• Correct optimization.

Prompt: Can line 2 be eliminated?
• Depends if x has any other uses outside of this basic block.

1 Label1:
2 x := 2 * y
3 w := x + y
4 if w > 0 j Label2

Other Types of Local Optimizations

(without needing to analyze the entire procedure body)

Some statements can be deleted:

x := x + 0

Any others?

x := x * 1

Some statements can be simplified:

x := x + 0 → x := 0

But only is an optimization if instruction on the right runs faster…

• Depends on the machine.
• Right instruction doesn’t have ADD nor second memory access.
• However, still worthwhile to do on all machines, because assigning an

identifier to a constant can open the door for other optimizations to
be performed.

Replacing Exponentiation Operator

y := y ** 2 → y := y * y

• Left instruction probably links to some built-in math library
• Will have overhead in performing this call, looping 2 times, etc.

Multiplying by a Power of 2

x := x * 8 → x := x << 3

• Operation of left bit shift is faster than multiply
• (more so in historical machines)

Also applicable if multiplication is not by a power of 2.

x := x * 15 → t1 := x << 4

x := t1 - x

Constant-Folding class of optimizations: Computing operations on constants
at compile-time (rather than run-time) if operands are literals in instruction.

Example 1:
x := 2 + 2 → x := 4

Example 2: (Conditional constant)
if 2 < 0 j Label → (deleted because condition is false)

Example 3: (Conditional constant)
if 2 > 0 j Label → j Label

(conditional jump to unconditional jump)

Unreachable Code/Basic Blocks

• Eliminate basic blocks that are not the target of any jump or
conditional.
• May happen if a predecessor to a basic block is deleted (see

Conditional Constants, previous slide).
• Effect: will make program size smaller
• And sometimes faster (increasing spatial locality)

What is another scenario that causes unreachable blocks?
1.
2. Libraries – reduction of size of final binary
• Only the methods that are called are linked

Static Single Assignment Form

Some optimizations are simplified if each register only occurs once on LHS
of an assignment.

• Rewrite intermediate code into static single assignment form.
• Each variable is assigned exactly once and defined before it is used.
• Example:

x := y + z → t := y + z
w := x → w := t
x := 4 * x → x := 4 * t

Can be complicated due to loops.

Static Single Assignment Form - Optimization

An optimization that depends on static single assignment form. Given:
1. Some basic block is in single assignment form.
2. Variable is assigned exactly once.
3. Every variable is defined before it is used.

When two assignments have the same RHS, they will compute the save value.

Common Subexpression Elimination:
x := y + z → x := y + z

… → …

// SSA: values of x,y,z will not → …

// change in between these lines → …

… → …

w := y + z → w := x

Copy Propagation:

• “Propagating copies through the code”
• Given: static single assignment form
• Useful for enabling other optimizations

• (constant folding, dead code elimination)
• Dead Code Elimination: statement that does not contribute to the program’s result

• Statement is dead and can be eliminated

• Example:
t := y + z → t := y + z
w := t → w := t
x := 4 * w → x := 4 * t

• Initially, no improvement in the code.
• Perhaps w := t can be deleted?

Conclusion

• Each local optimization does little by itself.
• But, typically optimizations interact.
• Performing one optimization may enable another

• Optimizing compilers repeat optimizations until no improvement is
possible...
• ...or compiler stops optimization to limit compilation time.

Example 1

a := 5
x := 2 * a
y := x + 6
t := x * y

Example 2

a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

Example 3

a := 1
b := 3
c := a + x
d := a * 3
e := b * 3
f := a + b
g := e - f

(given that only g and x are referenced outside of this basic block)

After the Break

Global Optimization

Global Optimization

Topics:
• Data flow analysis
• Control flow graph

Control Flow Graphs

One Definition:
• Each statement in the program is a

node in the graph
• If statement x can be followed by

statement y, then there is an edge
x → y

Control Flow Graphs

Another Definition:
• Each node in a control flow graph is

a basic block

• Prompt: What is the program that
this control flow graph represents?

x := 3
b > 0

y := 0

a := 2 * x

y := z + w

• Notice that the constant propagation optimization could be
performed on this graph – and it would be ok!
• What if the blue node was block y := z + w ; x := 4 ?
• Would the constant propagation optimization still be safe?

• Big Question: When is it ok to globally propagate constants?

x := 3
b > 0

y := 0

a := 2 * x

y := z + w

Criteria Needed for Global Constant
Propagation

Recall a use:
• statement i assigns a value to variable x
• statement j uses x as an operand
• if there is a path from statement i to j and x is not reassigned along the way, then

statement j uses the value of x computed at statement i
• x is live at statement i
Can only replace a use of x by a constant n, when the last assignment to x is x := n
• Checking every path of all paths in a control flow graph is not trivial… must

consider loops and conditionals.
• Data flow analysis analyses entire control flow graph to find/compute all program

points where this criteria holds.

Data Flow Analysis

Values

At every program point, associate that x is either:
1. Not a constant, or we don’t know

• “TOP”
• x = ⏉

2. Constant
• “CONSTANT” c
• x = c (some constant)

3. The statement at the program point never executes
• “BOTTOM”
• x = ⏊

Example

Given global constant information, it is easy to perform the
optimization.

• Inspect value of x at each program point.
• If x is a constant at that point, we can replace use of x with that

constant.
• Program points are in between statements.

x := 3
b > 0

y := 0

a := 2 * x

y := z + w
x := 4

Building a Systematic Algorithm

• Big Idea: “transfer/push” information from one statement to the next

Two functions:
1. Constant information
• C(s,x,in) = value of x before statement s
• C(s,x,out) = value of x after statement s

2. Transfer function
• Will transfer information from one statement to another

Statement s has some set of immediate predecessor statements p1…pn

Rules 1-4: Transfer info from OUT of one statement to IN of the next statement.

Transfer Function, Rule 1:
if 𝐶 𝑝!, 𝑥, 𝑜𝑢𝑡 = ⊤ for any 𝑖, then 𝐶 𝑠, 𝑥, 𝑖𝑛 = ⊤

Rule 2:
if 𝐶 𝑝!, 𝑥, 𝑜𝑢𝑡 = 𝑚 & 𝐶 𝑝", 𝑥, 𝑜𝑢𝑡 = 𝑛 &𝑚 ! = 𝑛, then 𝐶 𝑠, 𝑥, 𝑖𝑛 = ⊤

Rule 3:
if 𝐶 𝑝!, 𝑥, 𝑜𝑢𝑡 = 𝑐 or ⊥ for all 𝑖, then 𝐶 𝑠, 𝑥, 𝑖𝑛 = 𝑐

Rule 4:
if 𝐶 𝑝!, 𝑥, 𝑜𝑢𝑡 =⊥ for all 𝑖, then 𝐶 𝑠, 𝑥, 𝑖𝑛 = ⊥

Statement s has some set of immediate predecessor statements p1…pn

Rules 5-8: Transfer info from IN of one statement to OUT of the same statement.

Rule 5:
if 𝐶 𝑠, 𝑥, 𝑖𝑛 = ⊥, then 𝐶 𝑠, 𝑥, 𝑜𝑢𝑡 =⊥

Rule 6:
if 𝑠 is an assignement statement 𝑥 ≔ 𝑛 & 𝐶 𝑠, 𝑥, 𝑖𝑛 ≠ ⊥ so 𝑠 can be reached ,

then 𝐶 𝑥 ≔ 𝑛, 𝑥, 𝑜𝑢𝑡 = 𝑛

Rule 7:
if 𝑠 (RHS of 𝑠) is more complicated than assignment,

then 𝐶 𝑠, 𝑥, 𝑜𝑢𝑡 = ⊤

Rule 8:
𝐶 𝑦 ≔ … , 𝑥, 𝑜𝑢𝑡 = 𝐶 𝑦 ≔ … , 𝑥, 𝑖𝑛 , if 𝑥 ! = 𝑦

Algorithm

1. For every entry s into the program, set C(s,x,in) = ⏉
2. Everywhere else, set C(s,x,in) = C(s,x,out) = ⏊
3. Repeat until all points satisfy one of the 8 rules

Example 1

Ideas:
• Look where the information is inconsistent and update it.
• At the beginning, information is consistent everywhere except at the

first statement.

x := 3
b > 0

y := 0

a := 2 * x

y := z + w
x := 4

Example 2

Analysis of Loops

The need for ⏊ is because of loops.

Example 3

Can prove that constant propagation algorithm is linear to program
size.

Liveness Analysis
(Another Global Analysis)

Liveness Analysis

• Motivation: once constants have been globally propagated, we would
like to eliminate dead code

• Liveness: a variable is live on an edge if there is a path from an edge
to the use of that variable, that does not go through any
reassignment.

x := 3
b > 0

y := 0

a := 2 * x
a := 2 * 3

y := z + w

x := 3 is dead (assuming x is not used elsewhere)

• Dead statements can be
deleted from the program
• Need liveness information
• Similar to constant

propagation algorithm:
• We will transfer information

between adjacent program
points

• Rather than a constant information function, we need a liveness information
function.
• Will return a Boolean (liveness is simpler):

• L(s,x,out)
• L(s,x,in)

Statement s has some set of immediate successor statements t1…tn

Rule 1:

𝐿 𝑠, 𝑥, 𝑜𝑢𝑡 =)𝐿 𝑡! , 𝑥, 𝑖𝑛 , where 𝑡! is a successor of 𝑠

Rule 2:
𝐿 𝑠, 𝑥, 𝑖𝑛 = 𝑡𝑟𝑢𝑒, if 𝑠 refers to 𝑥 on RHS

Rule 3:
𝐿 𝑠"≔$, 𝑥, 𝑖𝑛 = 𝑓𝑎𝑙𝑠𝑒, if 𝑒 does not refer to 𝑥

Rule 4:
𝐿 𝑠, 𝑥, 𝑖𝑛 = 𝐿 𝑠, 𝑥, 𝑜𝑢𝑡

(statements that do not refer to 𝑥)

Algorithm

1. Assign L(…)=false, where … is some variable, at all program points
2. Repeat constraint satisfaction alg until all statements s satisfy rules

1-4 (there are no inconsistencies)
• Pick an s not satisfying 1-4 and update using the appropriate rule.

Example

• Loop that counts to 10 and exits.

Observe:
• Values can change from false to true, but not the other way around.
• Each value can only change once.
• Termination guaranteed.

Conclusion

• Two kinds of global analysis:
1. Constant propagation
2. Liveness

• Constant propagation is a forward analysis.
• Liveness is backwards.
• There are other types of global flow analysis.
• Most can be classified as either forward or backward.

Example 2

