CSC 416/565:
DESIGN AND  sexcrsmess

CONSTRUCTION = ===
OF COMPILERS



Code Generation |

References:
1. [Thain]

2. [Hennessy / Larus], Computer Architecture, A Quantitative
Approach Appendix A

3. online MIPS references
4. MIPS simulator: MARS



Where Are We?

>

Lo ot il maz,l,\‘w;_, (_,‘.,,‘\ .
/}5')’44/1’)1«[ (,Lv»

| —
i

e

| Beek BN

R

7~
’

- - "[ -
(7L\Cl , w2 6 Een T f.z_l Chn

Will "translate" our AST/IR into assembly language.

* Very similar to machine language (binary 1s and Os).

e Assembly is symbolic:
1. symbols: names for commonly occurring bit patterns
2. opcodes, register specifiers
3. labels are allowed



i, ? i

Source Object
file »| Assembler file
/—\ /—\
Source N bl R Object R ) Executable
file "R " file | Linker file
A
/\ /\
Source - | Object Program
file = " file library
/\ /—\

FIGURE A.1 The process that produces an executable file. An assembler translates a file of
assembly language into an object file, which is linked with other files and libraries into an executable
file.

* Assembler: translates assembly into binary
* input: source file (in assembly)

* output: object file (may reference subroutines and data in other object and
library files)

* Linker: creates executable file by combining object and library files.




Assembler Directives

* Assembler Directives begin with a period
* instructs the assembler how to translate the next part of the program

* Examples:
.data
.globl

.asciliz



.text

. text assembler directive -g};g? iam
indicates that succeeding lines main:
contain instructions SUBUE  HePa eps B2
SW $ra, 20($sp)
sd $a0, 32($sp)
SW $0, 24($sp)
.data assembler directive — e "EEENSRD
indicates that succeeding lines 1w] §t6, ismsg)
. mu t7. 3t6. 356
contain data i $t5, 24($5D)
addu $t9, $t8, $t7
SW $t9, 24($sp)
. . . addu 310, 316, 21
.asciiz assembler directive Sw $0, 28($sp)
stores a null terminated string in e e g G000
memory; usually used w/ a label Tw $al, 24($sp)
jal printf
move $v0, $0
Tw $ra, 20($sp)
.globl label addu isp' $sp, 32
declares the label as a global symbol o L
that should be visible to code stored 40
. . .data
in other files alias B

Str:

.asciiz "The sum from O ..

100 is %d\n"



Labels

Labels are followed by a colon

* provide a symbolic name to the
next memory location

* Examples:

str:

malin:

.text

.align

.globl
main:

subu

SW

sd

SW

SW
Toop:

Tw

mul

Tw

addu

SW

addu

SW

ble

la

Tw

jal

move

Tw

addu

R i

.data
.align
Str:

SAsScT12

2
main

$sp,
$ra,
$a0,
$0,
$0,

$t6,
o7
$t8,
$19,
$t9,
$t0,
$t0,
$t0,
$a0,
$al,
print
$vO,
$ra,
$sp,
$ra

0

"The sum from 0 ..

$sp, 32
20($sp)
32($sp)
24($sp)
28($sp)

28($sp)
$t6, $t6
24($sp)
$t8, $t7
24($sp)
$t6, 1
28($sp)
100, Toop
SEr
24($sp)
.f.‘

$0
20($sp)
$sp, 32

100 is %d\n"



Local vs. Global (External Labels)

* Labels are local by default.
* Labels must be explicitly declared global.

* A label is external if the labeled object can be referenced from other
files.



Loading a

Program Into Memory and

Executing It
Code Data Heap — + Stack

Tasks: 0 4GB
1. Creates new address space for the program; large enough to hold text

and data segments.
2. Copies instructions and data into new address spaces; pushes program

arguments onto stack.
3. Initializes (clears) machine registers.

* Ssp becomes address of first free stack location
4. Jump to the start-up routine.

e copy program args from stack into registers

e call program's main module

* when main returns, return to terminal w/ exit system call




Code

Data

Heap —

+ Stack

[Thain]

4GB

TFFffff

10000000

400000

hex

Stack segment

1
T

Dynamic data

~~ Static data ] Data segment

hex

Text segment

hex Reserved

[Hennessy / Larus]



Memory Usage

TFFffff

10000000

400000

hex

hex

hex

l
T

Dynamic data

Static data

Reserved

Stack segment

Data segment

Text segment

Memory layout convention that is typically followed:
e [OxO0000000 - 0x00400000] Reserved

. EOXOO4OOOOO - 0x10000000] Text Segment / Code
program's instructions)

e [0x10000000 - .. ] Data Segments

* begins with Static data
* objects' size known to compiler

* lifetime (interval in which program can access it) is program's
entire execution

* Example: constants
* then Dynamic data / Heap
* allocated as the program executes

* inC,malloc library routine finds and returns a new-block of
memory; in Java, the new keyword

» grows upward toward stack (to higher addresses)

e [.. - Ox7fffffff] Stack Segment

* grows downward (to lower addresses) towards heap as
program pushes values onto stack

 Heap and stack begin as far apart as possible, but
can grow to use a program's entire address space.



Procedure Call Convention

MIPS has 32 general purpose registers (numbered 0-31):

* 0 Szero SO - hardwired with constant
value O

» 1 Sat - reserved, should not be used by
programmer

e 2-3 Sv0 Sv1 - convention: return values
from functions

* 4-7 5a0 ... $a3 - pass first four args to
routli<nes; remaining args are passed on
stac

* 8-15 5t0 ... St7 - caller-save registers;
not preserved across function calls

e 16-23 SsO ... Ss7 - callee-save registers

24-25 St8 St9 - caller-save
26-27 SkO Sk1 - reserved

28 Sgp - points to static data segment
"global pointer"; usually
contains 0x10008000

29 Ssp - stack pointer
30 Sfp - frame pointer

31 Sra - return address from a
procedure call



MIPS Commands to Know

* lw rt, address - * Jr rs
load the word from specified unconditionally jump to instruction
address into register rt whose address is in register rs

* sw rt, address *mul rdest, rsrcl, src?
store word in register rt into src2 is either a register or immediate
memory at specified address value

* addiu rt, rs, %mm .., *move rdest, rsrc
|rrtnz Lssihi%mand for "immediate" bgtz rs, label |

branch to label if register rs is

e subu rd, rs, rt greater than zero
rd & rs—rt e 11 rdesr, imm

* Jal target load immediate

unconditionally jump to instruction
at label target



Examples in MARS 4.5
(MIPS Assembler and Runtime Simulator)

add.asm

main:
addiu $t0, $zero, 5
addiu $t1, $zero, 7
addu $t2, $to, $t1



Examples in MARS 4.5
(MIPS Assembler and Runtime Simulator)

swap.asm

main:

.data

.word 7
.word 3

. text

.globl main

lui $s0, 0x1001

lw $s1,
lw $s2,
sw $s2,
sw $s1,
jr $ra

0(%$s0)
4($s0)
0(%$s0)
4($s0)

#load upper part of register s@ with 0x1001, so s@ = 0x10010000

#load sl with the contents of memory address 0x10010000
#load s2 with the contents of memory address 0x10010004
#store contents of s2 into memory address 0x10010000
#store contents of sl into memory address 0x10010004

7
3



Procedure Call Convention

What caller does to execute a procedure call:

1. Pass arguments
* first four passed in registers (Sa0 .. Sa3)
* remaining args pushed on stack

2. Save caller-save registers

3. Execute jal instruction, which automatically:
e jumps to callee's first instruction
* saves return address in Sra



Procedure Call Convention

What callee does before called subroutine begins execution:

1. Save callee-save registers in the frame
(SsO .. Ss7) if going to alter:

* Sfp - saved by every procedure that
allocates a new stack frame

* Sra - only needs to be saved if callee itself
makes a call

2. Establish frame pointer Sfp
 Sfp = Ssp + framesize - 4

$fp —>

$sp —>

Argument 6

Argument 5

Saved registers

Local variables

Higher memory addresses

Stack
grows

|

Lower memory addresses



Procedure Call Convention

How callee returns execution back to the caller:

o if callee is returning a value, place it in SvO

* restore all callee-saved registers that were saved upon procedure
entry

* “pop the stack”
Ssp = Ssp + framesize
Ssp = Sfp + 4
* return by jumping to address in Sra



Calling convention requires space in stack frame for:

* 4 arg registers (Sa0 .. Sa3)

 return address (Sra)
* (padded to double word boundary)

1 word = 4 bytes (32 bits)
* 4 words + 1 word pad + 1 word Sra = 24 bytes (minimum frame size)

* to store a word in byte-addressable memory, must break 32-bit quantity
into 4 bytes:
* Example: 0x01ab23cd
* Big-endian: 0x01 Oxab 0x23 Oxcd
e Little-endian: Oxcd 0x23 Oxab 0x01

* to make hardware simpler, words are stored at word-aligned addresses
* Sspis also kept double word aligned
* local data section is also double word aligned



Proposed Convention for all Procedure Calls

8 (Sfp)
4 (Sfp)
0 (S$fp) Arg4
-4 Arg3
-8 Arg?2
-12 Argl
<—mmmmmm padding here so that return addr is double word aligned?
-16 return addr —— |
=20 frame pt | -——— saved registers

other callee saved registers -—|

c . local variables and outgoing args
$Sp <emmmm e double word aligned




Examples

Factorial (Page A-26)
C routine:

main () {

printf ("The factorial of 10 is %d\n", fact(10));

}
int fact(int n) {
if (n < 1)
return 1;
else

return n * fact(n-1);

e factorial.asm as defined won’t work because printfis
unresolved referenced

* Modified code touse syscall, pg A-48

* Demo factorial.asmin MARS



§3¢

After the Break:
Practice!



PBL Activity

e Teams of 2 or 3.



Problem 1a: “Getting Your Feet Wet”

Translate this Ram23-like program to assembly. Load this into your
MIPS simulator and make sure it executes.

integer
integer
integer

X 5;

2
3
Y

X
Y
A



Problem 1b: “Adding printin”

Then add println.

integer x; * Qutput answer using println?
T ;

iitigii See syscall (Page A-28)

X = 5;

% =

y = 1i sSv0, 1

“ 1i $a0, 5

Syscall // prints 5
// system call for print int is 1



Problem 2: “Loops”

integer i = 0; * See next slide for branching hint...

integer result = 0;

for (i = 0; i < 20; i=i+2) * What are the MIPS opcode instructions
result += 1; to know?

println (result) ;

* How to perform a branch (if
statements)?

e See next slide



Branching ldea

evaluation code that puts a value 1nto a register
bgtz Falsel.abel

code to run 1f branch 1s true
Jump 1nstruction to Donelabel

Falsel.abel:
code to run 1f branch 1s false

Donelabel:
rest of program




Problem 3: “A method call”

* Be especially comfortable with slides 21-25

main {

integer a;

a = 4;

println (helper(a));
}

public static integer helper (integer a) {
integer Db;
b=a* 4;
return b;




‘II

Problem 4: “Factoria

* Create Factorial and compute factorial (10)
* Be comfortable with Section A.6 before starting this problem.
* See starter code beginning on Page A-27.



More Practice? Problem 5: “Fibonacci”

* Create Fibonacci and compute £ib (5)




