
CSC 416/565:
DESIGN AND

CONSTRUCTION
OF COMPILERS

West Chester University
Dr. Richard Burns
Fall 2023

Code Generation I

References:
1. [Thain]
2. [Hennessy / Larus], Computer Architecture, A Quantitative

Approach Appendix A
3. online MIPS references
4. MIPS simulator: MARS

Where Are We?

Will "translate" our AST/IR into assembly language.

• Very similar to machine language (binary 1s and 0s).
• Assembly is symbolic:

1. symbols: names for commonly occurring bit patterns
2. opcodes, register specifiers
3. labels are allowed

• Assembler: translates assembly into binary
• input: source file (in assembly)
• output: object file (may reference subroutines and data in other object and

library files)

• Linker: creates executable file by combining object and library files.

Assembler Directives

• Assembler Directives begin with a period
• instructs the assembler how to translate the next part of the program

• Examples:
.data

.globl

.asciiz

.text assembler directive
indicates that succeeding lines
contain instructions

.data assembler directive
indicates that succeeding lines
contain data

.asciiz assembler directive
stores a null terminated string in
memory; usually used w/ a label

.globl label
declares the label as a global symbol
that should be visible to code stored
in other files

Labels

Labels are followed by a colon
• provide a symbolic name to the

next memory location
• Examples:

str:

main:

Local vs. Global (External Labels)

• Labels are local by default.
• Labels must be explicitly declared global.
• A label is external if the labeled object can be referenced from other

files.

Loading a Program Into Memory and
Executing It
Tasks:
1. Creates new address space for the program; large enough to hold text

and data segments.
2. Copies instructions and data into new address spaces; pushes program

arguments onto stack.
3. Initializes (clears) machine registers.

• $sp becomes address of first free stack location
4. Jump to the start-up routine.

• copy program args from stack into registers
• call program's main module
• when main returns, return to terminal w/ exit system call

[Thain]

[Hennessy / Larus]

Memory Usage
Memory layout convention that is typically followed:
• [0x00000000 - 0x00400000] Reserved
• [0x00400000 - 0x10000000] Text Segment / Code

(program's instructions)
• [0x10000000 - ..] Data Segments

• begins with Static data
• objects' size known to compiler
• lifetime (interval in which program can access it) is program's

entire execution
• Example: constants

• then Dynamic data / Heap
• allocated as the program executes
• in C, malloc library routine finds and returns a new-block of

memory; in Java, the new keyword
• grows upward toward stack (to higher addresses)

• [.. - 0x7fffffff] Stack Segment
• grows downward (to lower addresses) towards heap as

program pushes values onto stack
• Heap and stack begin as far apart as possible, but

can grow to use a program's entire address space.

Procedure Call Convention

• 0 $zero $0 - hardwired with constant
value 0
• 1 $at - reserved, should not be used by

programmer
• 2-3 $v0 $v1 - convention: return values

from functions
• 4-7 $a0 ... $a3 - pass first four args to

routines; remaining args are passed on
stack
• 8-15 $t0 ... $t7 - caller-save registers;

not preserved across function calls
• 16-23 $s0 ... $s7 - callee-save registers

• 24-25 $t8 $t9 - caller-save
• 26-27 $k0 $k1 - reserved
• 28 $gp - points to static data segment

"global pointer"; usually
contains 0x10008000
• 29 $sp - stack pointer
• 30 $fp - frame pointer
• 31 $ra - return address from a

procedure call

MIPS has 32 general purpose registers (numbered 0-31):

MIPS Commands to Know

• lw rt, address
load the word from specified
address into register rt
• sw rt, address

store word in register rt into
memory at specified address
• addiu rt, rs, imm

imm is shorthand for "immediate"
rt ← rs + imm
• subu rd, rs, rt

rd ← rs – rt
• jal target

unconditionally jump to instruction
at label target

• jr rs
unconditionally jump to instruction
whose address is in register rs
• mul rdest, rsrc1, src2

src2 is either a register or immediate
value
• move rdest, rsrc
• bgtz rs, label

branch to label if register rs is
greater than zero
• li rdesr, imm

load immediate

Examples in MARS 4.5
(MIPS Assembler and Runtime Simulator)

add.asm

main:
 addiu $t0, $zero, 5
 addiu $t1, $zero, 7
 addu $t2, $t0, $t1

Examples in MARS 4.5
(MIPS Assembler and Runtime Simulator)

swap.asm

.data
 .word 7
 .word 3

 .text
 .globl main
main:
 lui $s0, 0x1001 #load upper part of register s0 with 0x1001, so s0 = 0x10010000
 lw $s1, 0($s0) #load s1 with the contents of memory address 0x10010000 = 7
 lw $s2, 4($s0) #load s2 with the contents of memory address 0x10010004 = 3
 sw $s2, 0($s0) #store contents of s2 into memory address 0x10010000
 sw $s1, 4($s0) #store contents of s1 into memory address 0x10010004
 jr $ra

Procedure Call Convention

1. Pass arguments
• first four passed in registers ($a0 .. $a3)
• remaining args pushed on stack

2. Save caller-save registers
3. Execute jal instruction, which automatically:
• jumps to callee's first instruction
• saves return address in $ra

What caller does to execute a procedure call:

Procedure Call Convention

1. Save callee-save registers in the frame
($s0 .. $s7) if going to alter:
• $fp - saved by every procedure that

allocates a new stack frame
• $ra - only needs to be saved if callee itself

makes a call

2. Establish frame pointer $fp
• $fp = $sp + framesize - 4

What callee does before called subroutine begins execution:

Procedure Call Convention

• if callee is returning a value, place it in $v0
• restore all callee-saved registers that were saved upon procedure

entry
• “pop the stack”

$sp = $sp + framesize

$sp = $fp + 4

• return by jumping to address in $ra

How callee returns execution back to the caller:

Calling convention requires space in stack frame for:
• 4 arg registers ($a0 .. $a3)
• return address ($ra)

• (padded to double word boundary)
1 word = 4 bytes (32 bits)

• 4 words + 1 word pad + 1 word $ra = 24 bytes (minimum frame size)
• to store a word in byte-addressable memory, must break 32-bit quantity

into 4 bytes:
• Example: 0x01ab23cd
• Big-endian: 0x01 0xab 0x23 0xcd
• Little-endian: 0xcd 0x23 0xab 0x01

• to make hardware simpler, words are stored at word-aligned addresses
• $sp is also kept double word aligned
• local data section is also double word aligned

Proposed Convention for all Procedure Calls

8($fp)
4($fp)

0($fp) Arg4
-4 Arg3
-8 Arg2
-12 Arg1
 <---------------------padding here so that return addr is double word aligned?
-16 return addr --|
-20 frame pt |--- saved registers
... other callee saved registers --|

... local variables and outgoing args
$sp <---------------------double word aligned

Examples
Factorial (Page A-26)

C routine:

• factorial.asm as defined won’t work because printf is
unresolved referenced
• Modified code to use syscall, pg A-48

• Demo factorial.asm in MARS

main() {
 printf("The factorial of 10 is %d\n", fact(10));
}
int fact(int n) {
 if (n < 1)
 return 1;
 else
 return n * fact(n-1);
}

After the Break:
Practice!

PBL Activity

• Teams of 2 or 3.

Problem 1a: “Getting Your Feet Wet”

Translate this Ram23-like program to assembly. Load this into your
MIPS simulator and make sure it executes.

integer x;
integer y;
integer z;
x = 5;
x = 2 * x;
y = 3 + x;
z = y - x;

Problem 1b: “Adding println”

Then add println.

integer x;
integer y;
integer z;
x = 5;
x = 2 * x;
y = 3 + x;
z = y - x;

println(z);

• Output answer using println?
See syscall (Page A-28)

li $v0, 1

li $a0, 5

Syscall // prints 5

// system call for print_int is 1

Problem 2: “Loops”

integer i = 0;
integer result = 0;
for (i = 0; i < 20; i=i+2)
 result += i;
println(result);

• See next slide for branching hint…
• What are the MIPS opcode instructions

to know?
• How to perform a branch (if

statements)?
• See next slide

Branching Idea

 evaluation code that puts a value into a register

 bgtz FalseLabel

 code to run if branch is true
 jump instruction to DoneLabel

FalseLabel:
 code to run if branch is false

DoneLabel:
 rest of program

Problem 3: “A method call”

main {
 integer a;
 a = 4;
 println(helper(a));
}
public static integer helper(integer a) {
 integer b;
 b = a * 4;
 return b;
}

• Be especially comfortable with slides 21-25

Problem 4: “Factorial”

• Create Factorial and compute factorial(10)
• Be comfortable with Section A.6 before starting this problem.
• See starter code beginning on Page A-27.

More Practice? Problem 5: “Fibonacci”

• Create Fibonacci and compute fib(5)

