CSC 416/565:

West Chester University

DESIGN AND CONSTRUCTION | or. Richard Burns
OF COMPILERS | F2023




Today

Where are we?

J . | FrodEnd [—> T — @;ktg
1 /7”%

Towards the translation of Intermediate Code to Assembly Language

* Activation Records and Memory Organization




Runtime Organization / Environment

* Created and managed by compiler.
* Target programs will be executed in this runtime environment.

* Placing local variables, function parameters (formals), etc. into
activation records (stack frames) in a machine-dependent way.

e Let’s consider AST as our IR:

* IR should be independent of back-end Examples of back-ends:
* SPARC

* Intel x86 (CISC)
* MIPS (RISC)
e JVM




Issues

1. Allocation of storage locations
2. Access to variables and data

Ultimately need to be able to emit machine instructions such as:
LD R1, a(RO)
MUL R1, R1, 8



Introduction

* In Theory: a program/process has freedom to use memory in any way
that it wants to

Program Memory

0 4GB

* In Practice: a convention has developed that divides the area of a
program into logical segments

* We’ll be talking about memory addresses from low to high




What goes in Program Memory?

Program Memory

0 4GB

Program memory is allocated by the OS at runtime
1. Machine Code: assembly instructions to execute
2. Global data and variables

3. Space to dynamically allocate memory at runtime
e (new in Java for object instances, mallocinC, ...)

4. Local variables currently use, function calls, current execution state
of the program




Logical Segmentation

* In Practice: a convention has developed that divides the area of a
program into logical segments

Program Memory

0 4GB

Code Data Heap — . + Stack

0 4GB



Code Data Heap —

Logical Segmentation

+ Stack

0

Program memory is allocated by the OS at runtime

1. [Code] Machine Code: assembly instructions to execute
* Sometimes called code segment or text segment

2. [Data] Global data and variables

3. [Heap] Space to dynamically allocate memory at runtime

e (new in Java for object instances, mallocinC, ...)
* Grows “up” from low memory addresses to high addresses

4. [Stack] Local variables currently use, function calls, current
execution state of the program
* Grows “down” from high addresses to low addresses

Memory in-between heap and stack is currently unused memory.

4GB




Logical Space:

StO rage Organlzathn Code Data Heap — + Stack

0 4GB

* Compiler perspective: executing target program runs in its
own logical address space in which each program value has a location.

* Operating system: responsible for executing multiple target programs
simultaneously and mapping logical into physical address space.

* physical address space for a program is usually spread across memory (non
contiguous)

Multiple Simultaneous Programs:

OS Kernel Process 1 Process 2

Code | Data | Code | Data | Heap | Stk | Code | Data | Heap | Stk
Virtual Addrs: 0 — 4GB O — 4GB




Runtime Logical Memory Organization of
Code and Data Areas
Low address | * 1 byte is the smallest unit of addressable
Code memory
e | 1 byte = 8 bits
Static
4 bytes = 1 word
Heap * Multibyte objects are stored in consecutive bytes
; and given the address of the first byte.
Free Memory | ® Amount of storage needed for a named variable
A is determined from its type.
Stack
High address




Today: will primarily discuss stack management

What’s In Each Part? Sliisisisn e o i

* Generated target code. Code Low
e Static: global constants, information used for

garbage collection, etc. Jiatic
* Dynamic Portions: Stack and Heap begin at

opposite ends of the address space and grow Heap

towards each other i

e Stack: holds activation record data structures and

Free Memory
data local to a procedure "
* Heap: holds data that may outlive the call to a
procedure. Garbage collection assists with heap Stack
management by detecting useless data elements. High

Big idea: stack grows as local variables enter scope and functional calls are performed.



Stack Management

Properties:

 Space for local variables is pushed onto stack when a procedure is
called.

* Local variables are destroyed when a function returns.

* The Benefit: Allows space to be shared by procedure calls whose
durations do not overlap in time.

(Other high-level languages (ML, Scheme, ...) are more complicated to
represent.)



Activation Tree

Represents the activations of procedures during the running of a
program.

e Each node is one activation.

* Children of a node correspond to activations of procedures called by
that node.



Big Idea: space to be shared by procedure calls whose durations do not overlap in time

Example: Fibonacci Sequences

System starts main
enter f(5)

exit f(5)
main ends

enter f(4)

exit f(4)
enter f(3)

exit f(3)

enter f(3)

exit f(3)
enter f(2)
exit f(2)

enter f(2)
exit f(2)
enter (1)
exit f(1)

enter f(2)
exit f(2)
enter f(1)
exit f(1)

public int fibonacci(int n) {

if(n == 0)
return 0;
else if(n == 1)
return 1;
else
return fibonacci(n - 1) + fibonacci(n - 2);
}
main
Initial Call: T(5) |
f(5)
‘,/’
NEERE
7\ 7\
f(3) f(2) f(2) (1)
7\
f(2) f(1)




Terminology

e Caller: a method that "we are in", who is
calling another method (the callee)

* Callee: the method being called; execution

will pass to this method; eventually will
return back to the caller

 Stack Push: on entry to functions,
parameters are pushed in large batches

e Stack Pop: when method returns, variables
popped in large batches

Code

r___> —
Static

Heap

'

Free Memory

A

Stack

Low

High



Stack Management

* Most CPUs have a specialized register that stores the address where
the next item will be pushed/popped

 SSP Stack pointer

 Entry to a function: stack grows and SSP decreases in value

* Exit from a function: stack and SSP in value



The value (memory location) of SSP changes during execution of a
program. (e.g. the top of the stack grows and shrinks)

* Entry to a function: stack grows and SSP decreases in value
* Exit from a function: stack and SSP in value

The stack is usually designed to start at a high memory address and
“grow” towards smaller addresses.



Convention is that stack always “grows” towards lower addresses

Thain
Code Data Heap — . + Stack
Low 0 4GB
Code
Static
Thain
Heap Stack Frame | — High
formain:
Free Memory Stack Frame
+ for f:
Stack
High Stack Frame
for g:
<+ Stack Pointer
Dragon Book J (stack grows down) |

Low



Stack Frame / Activation Record

Stack frame: memory on the stack used for an invocation of a function
e Contains parameters and local variabes used by that function
* When a function is called, a new stack frame is pushed

 When a function returns, the stack frame is popped



Typical Layout of a Stack Frame

* Ssp stack pointer points to top of stack

* Program also has to know where local variables exist in memory/on the stack.
Tricky because Ssp can move.

* Sfp frame pointer register stores memory address of beginning
current frame
e Does not move for the duration of the subroutine call.

* Big Idea: Parameters that are passed into the subroutine can remain at a
constant spot relative to the frame pointer.

» (Terminology: the frame pointer is sometimes called the base pointer)




Common Activation Frame Layout

 Sfp points to first word (highest memory location) in the currently executing

procedure's stack frame

* Ssp points to the last word of the frame (“top” of the stack)

Stack Frame

formain:
| / / H’:S‘L.»-c-—f (/ LK
RS
e N N S Stack Frame
for £
N7

L’:‘f'ﬂl/ Ad(i/f SSes

Stack Frame
for g:

Parameters to main
Old Frame Pointer
Local Variables
Return Address

Parameters to £
Old Frame Pointer
Local Variables
Return Address

Parameters to g
Old Frame Pointer
Local Variables

J (stack grows down) |

< Frame Pointer

+ Stack Pointer



Final Thoughts

* Nothing magic about this organization.
* Could rearrange order of frame elements.

e Details of the elements in a stack frame differ somewhat between CPU
architectures and OS’s

* As long as caller/callee agree on what goes in the stack frame, then any
function may call another

 BUT, one frame layout is better than another if it improves execution speed or
simplifies code generation.

* Real compilers hold as much of the frame as possible in registers, not
the stack (memory).



After the Break

Stack Calling Convention



A Deeper Look at Stack Frames and Calling
Conventions

When one function calls another:
1. Place function arguments on the stack

2. Place function arguments into machine registers

3. Variation of strategies (1) and (2)

* Will focus mainly on the stack calling convention




Stack Calling Convention

Conventional approach:

1.

Al S

Push arguments on stack in reverse order
Jump to address of function

Also set the return address on stack

Saves old frame pointer

Create space for any needed local variables

Potential Assembly Code:

Function Call: PUSH $20
f(10,20); PUSH $10
CALL f




2nd Argument (20)

Potential Assembly Code: 1st Argument (10)
Function Call: PUSH $20 Return Address
£(10,20); PUSH $10 Old Frame Pointer < Frame Pointer
CALL f .
Local Variables

+ Stack Pointer

 (stack grows down) |

* Arguments and local variables are loaded by T from memory/stack
relative to the frame pointer

 Argl is always two words above Sfp
* Arg2 is always three words above Sfp

* This convention allows for a variable number of arguments



it’s Arbitrary!

* Runtime organization design is arbitrary.

* Frame layout design is arbitrary.

* (google “frame design MIPS”)

Actual parameters

2nd Argument (20)

1st Argument (10)

Return Address

Old Frame Pointer

Local Variables

Temporaries

Figure 7.5: A general activation record

Dragon

J (stack grows down) |

Thain

< Frame Pointer

+ Stack Pointer

Appel

incoming
arguments

frame pointer —

outgoing
arguments

stack pointer —

argument »n

argument 2
argument 1
static link

1 higher addresses

previous
frame

local
variables

return address
temporaries

saved
registers

argument m

argument 2
argument 1
static link

current
frame

next
frame

J lower addresses

FIGURE 6.2.

A stack frame.




Contents of Current Frame

* Local Variables: with respect to the
current frame

* Some in frame; others possibly in registers

* Return Address: memory location
holding where execution should go to in
calling function when callee returns

» Saved Registers: if a register needs to be
saved into the frame to make room for
other registers

* Temporaries: if we need to store
additional intermediary data than what
we can fit in registers

incoming
arguments

frame pointer —

outgoing
arguments

stack pointer —

argument n

argument 2
argument 1
static link

1 higher addresses

previous
frame

local
variables

return address
temporaries

saved
registers

argument m

argument 2
argument 1
static link

current
frame

next
frame

J lower addresses

FIGURE 6.2. A stack frame.




Registers

* Most modern machines have a large set of registers.
e Typically around 32 or so.

* MIPS target architecture (our compiler’s back-end) has 32 integer
registers.




Why MIPS?

 MIPS is a RISC (Reduced Instruction Set Computer) architecture
* As opposed to CISC (Complex Instruction Set Computer), e.g. Intel

* RISC is simplified — and also has some advantages — over CISC
* Only simple instructions (code sizes then to be larger...)
* Allinstructions can be executed in one clock cycle
* Fixed 32 bit instructions (first 6 bits are opcode)
e Must use LOAD/STORE instructions to copy data to/from registers

MUL Srl, Srl, 8
010101 00001 00001 0000000000001000
* Intel x86 still uses CISC
 MIPS used in lots of embedded systems (Sony PlayStation 2, Nintendo 64)



When a Function Call Happens:
How to Pass Arguments from Caller to Callee?

Can’t we use registers?

* It gets complicated.
* Potential problem: most machine only have one set of registers.

 So, different procedures and functions need to use the same set of
registers.



Example Scenario:

e Method x is:

1. Storing a local variable in register Srl
2. Needs to call method vy

* Method vy also needs to use register Srl

Solution:

* Write x’s local variable to memory so that the register value is not
overwritten and lost

* Later, restore the value back into the register from memory

Who should save and restore Sr1? Method x or method y?



MIPS Calling Convention

Q: Who should save and restore Sr1? Method x or method y?
A: It depends.

1. Registers 16-23 (with symbolic names SsO ... Ss7), by convention, should be
preserved across function calls:

* referred to as: callee-save registers
* |tis the callee's responsibility to save/restore registers if it wishes to use SsO ... Ss7.

2. All other registers are not preserved.
e referred to as: caller-save registers

* Wisely selecting to use callee-save or caller-save registers for local variables and
temporaries can reduce number of needed loads/stores (writing variables to
memory).

* Example: if method x knows that a local variable will not be needed after some
method call, it can be placed in a caller-save register -- and purposely not save it
to memory before the method call.




Parameter Passing Using Registers

* Would like to pass arguments to subroutines using registers (rather
than the stack) to save time.

* On MIPS, 4 registers, by convention, are used for passing arguments:

Sal argl
Sal argz
Saz arg3

Sas3 argi



An Argument Passing Convention Using Both
Registers and Memory

argument »n

One approach:

incoming . previous
arguments . frame

* caller passes arguments a,...a, in registers argument 2
argument 1
* caller passes arguments a....a, at end of frame pointer | static ink
its own frame (in section marked Outgoing Jocal
Arguments) return address

* becomes Incoming Arguments of callee

temporaries
current

* What if callee needs to write incoming register swed | frame
registers
args to memory?

* When would this happen? If callee needs to call |
another method. srguments

argument m

argument 2
argument 1
stack pointer — static link




So, writing to memory cannot be avoided?
But the solution is not terrible.

1. leaf procedure: a procedure that doesn't call another procedure.
What proportion of procedures are leaves? It depends.

2. the callee may be finished with its use of an argument by the time it
needs to perform a function call

What if callee needs to write incoming register args to memory?
* caller also reserves space in its own frame for arg, .. arg, (before arg:)

e doesn't write anything there
* callee can use the designhated space to write to memory



Return Address

* When a function returns, where in memory is
the next instruction to execute?

e Store the address where the next instruction
exists.
1. Either in the activation record
2. Or, in aregister for faster access
Sra # register 31

* Non-leaf procedures will have to write the
return address to the stack frame.

incoming
arguments

frame pointer —

outgoing
arguments

stack pointer —

argument n

argument 2
argument 1
static link

previous
frame

local
variables

return address
temporaries

saved
registers

argument m

argument 2
argument 1
static link

current
frame




Conclusion

ldeally, most values are maintained in registers, but:

1. Pass By Reference requires storing values in memory — variable
“escapes”

2. Spilled Variables: not enough registers exist — value written
temporarily to the stack frame




