
CSC 416/565:
DESIGN AND CONSTRUCTION

OF COMPILERS

West Chester University
Dr. Richard Burns
Fall 2023

Today

Where are we?

Towards the translation of Intermediate Code to Assembly Language
• Activation Records and Memory Organization

Runtime Organization / Environment

• Created and managed by compiler.
• Target programs will be executed in this runtime environment.
• Placing local variables, function parameters (formals), etc. into

activation records (stack frames) in a machine-dependent way.
• Let’s consider AST as our IR:
• IR should be independent of back-end Examples of back-ends:

• SPARC
• Intel x86 (CISC)
• MIPS (RISC)
• JVM

Issues

1. Allocation of storage locations
2. Access to variables and data

Ultimately need to be able to emit machine instructions such as:
LD R1, a(R0)

MUL R1, R1, 8

Introduction

• In Theory: a program/process has freedom to use memory in any way
that it wants to

• In Practice: a convention has developed that divides the area of a
program into logical segments
• We’ll be talking about memory addresses from low to high

What goes in Program Memory?

Program memory is allocated by the OS at runtime
1. Machine Code: assembly instructions to execute
2. Global data and variables
3. Space to dynamically allocate memory at runtime
• (new in Java for object instances, malloc in C, …)

4. Local variables currently use, function calls, current execution state
of the program

Logical Segmentation

• In Practice: a convention has developed that divides the area of a
program into logical segments

Logical Segmentation

Program memory is allocated by the OS at runtime
1. [Code] Machine Code: assembly instructions to execute
• Sometimes called code segment or text segment

2. [Data] Global data and variables
3. [Heap] Space to dynamically allocate memory at runtime
• (new in Java for object instances, malloc in C, …)
• Grows “up” from low memory addresses to high addresses

4. [Stack] Local variables currently use, function calls, current
execution state of the program
• Grows “down” from high addresses to low addresses

Memory in-between heap and stack is currently unused memory.

Storage Organization

• Compiler perspective: executing target program runs in its
own logical address space in which each program value has a location.
• Operating system: responsible for executing multiple target programs

simultaneously and mapping logical into physical address space.
• physical address space for a program is usually spread across memory (non

contiguous)

Logical Space:

Multiple Simultaneous Programs:

Runtime Logical Memory Organization of
Code and Data Areas

• 1 byte is the smallest unit of addressable
memory

1 byte = 8 bits
4 bytes = 1 word

• Multibyte objects are stored in consecutive bytes
and given the address of the first byte.
• Amount of storage needed for a named variable

is determined from its type.

Low address

High address

What’s In Each Part?

• Generated target code.
• Static: global constants, information used for

garbage collection, etc.
• Dynamic Portions: Stack and Heap begin at

opposite ends of the address space and grow
towards each other
• Stack: holds activation record data structures and

data local to a procedure
• Heap: holds data that may outlive the call to a

procedure. Garbage collection assists with heap
management by detecting useless data elements.

Big idea: stack grows as local variables enter scope and functional calls are performed.

Today: will primarily discuss stack management
• will talk about heap management later

Low

High

Stack Management

Properties:
• Space for local variables is pushed onto stack when a procedure is

called.
• Local variables are destroyed when a function returns.
• The Benefit: Allows space to be shared by procedure calls whose

durations do not overlap in time.
(Other high-level languages (ML, Scheme, …) are more complicated to

represent.)

Activation Tree

Represents the activations of procedures during the running of a
program.
• Each node is one activation.
• Children of a node correspond to activations of procedures called by

that node.

Example: Fibonacci Sequences
System starts main
 enter f(5)
 enter f(4)
 enter f(3)
 enter f(2)
 exit f(2)
 enter f(1)
 exit f(1)
 exit f(3)
 enter f(2)
 exit f(2)
 exit f(4)
 enter f(3)
 enter f(2)
 exit f(2)
 enter f(1)
 exit f(1)
 exit f(3)
 exit f(5)
main ends

Initial Call: f(5)

Big Idea: space to be shared by procedure calls whose durations do not overlap in time

Terminology

• Caller: a method that "we are in", who is
calling another method (the callee)
• Callee: the method being called; execution

will pass to this method; eventually will
return back to the caller
• Stack Push: on entry to functions,

parameters are pushed in large batches
• Stack Pop: when method returns, variables

popped in large batches

Low

High

Stack Management

• Most CPUs have a specialized register that stores the address where
the next item will be pushed/popped
• $SP Stack pointer

• Entry to a function: stack grows and $SP decreases in value
• Exit from a function: stack shrinks and $SP increases in value

The value (memory location) of $SP changes during execution of a
program. (e.g. the top of the stack grows and shrinks)

• Entry to a function: stack grows and $SP decreases in value
• Exit from a function: stack shrinks and $SP increases in value

The stack is usually designed to start at a high memory address and
“grow” towards smaller addresses.

Low

High

Dragon Book

ThainConvention is that stack always “grows” towards lower addresses

Thain

High

Low

Stack Frame / Activation Record

Stack frame: memory on the stack used for an invocation of a function
• Contains parameters and local variabes used by that function
• When a function is called, a new stack frame is pushed
• When a function returns, the stack frame is popped

Typical Layout of a Stack Frame

• $sp stack pointer points to top of stack
• Program also has to know where local variables exist in memory/on the stack.

Tricky because $sp can move.

• $fp frame pointer register stores memory address of beginning
current frame
• Does not move for the duration of the subroutine call.
• Big Idea: Parameters that are passed into the subroutine can remain at a

constant spot relative to the frame pointer.
• (Terminology: the frame pointer is sometimes called the base pointer)

Common Activation Frame Layout

• $fp points to first word (highest memory location) in the currently executing
procedure's stack frame
• $sp points to the last word of the frame (“top” of the stack)

Final Thoughts

• Nothing magic about this organization.
• Could rearrange order of frame elements.
• Details of the elements in a stack frame differ somewhat between CPU

architectures and OS’s
• As long as caller/callee agree on what goes in the stack frame, then any

function may call another
• BUT, one frame layout is better than another if it improves execution speed or

simplifies code generation.

• Real compilers hold as much of the frame as possible in registers, not
the stack (memory).

After the Break
Stack Calling Convention

A Deeper Look at Stack Frames and Calling
Conventions
When one function calls another:
1. Place function arguments on the stack
2. Place function arguments into machine registers
3. Variation of strategies (1) and (2)

• Will focus mainly on the stack calling convention

Stack Calling Convention

Conventional approach:
1. Push arguments on stack in reverse order
2. Jump to address of function
3. Also set the return address on stack
4. Saves old frame pointer
5. Create space for any needed local variables

Function Call:
f(10,20);

Potential Assembly Code:
PUSH $20
PUSH $10
CALL f

• Arguments and local variables are loaded by f from memory/stack
relative to the frame pointer
• Arg1 is always two words above $fp
• Arg2 is always three words above $fp

• This convention allows for a variable number of arguments

Function Call:
f(10,20);

Potential Assembly Code:
PUSH $20
PUSH $10
CALL f

It’s Arbitrary!

• Runtime organization design is arbitrary.
• Frame layout design is arbitrary.
• (google “frame design MIPS”)

Dragon Thain

Appel

Contents of Current Frame
• Local Variables: with respect to the

current frame
• Some in frame; others possibly in registers

• Return Address: memory location
holding where execution should go to in
calling function when callee returns
• Saved Registers: if a register needs to be

saved into the frame to make room for
other registers
• Temporaries: if we need to store

additional intermediary data than what
we can fit in registers

Registers

• Most modern machines have a large set of registers.
• Typically around 32 or so.
• MIPS target architecture (our compiler’s back-end) has 32 integer

registers.

Why MIPS?

• MIPS is a RISC (Reduced Instruction Set Computer) architecture
• As opposed to CISC (Complex Instruction Set Computer), e.g. Intel

• RISC is simplified – and also has some advantages – over CISC
• Only simple instructions (code sizes then to be larger…)
• All instructions can be executed in one clock cycle
• Fixed 32 bit instructions (first 6 bits are opcode)
• Must use LOAD/STORE instructions to copy data to/from registers

MUL $r1, $r1, 8
010101 00001 00001 0000000000001000

• Intel x86 still uses CISC
• MIPS used in lots of embedded systems (Sony PlayStation 2, Nintendo 64)

When a Function Call Happens:
How to Pass Arguments from Caller to Callee?

Can’t we use registers?

• It gets complicated.
• Potential problem: most machine only have one set of registers.
• So, different procedures and functions need to use the same set of

registers.

Example Scenario:
• Method x is:

1. Storing a local variable in register $r1
2. Needs to call method y

• Method y also needs to use register $r1

Solution:
• Write x’s local variable to memory so that the register value is not

overwritten and lost
• Later, restore the value back into the register from memory

Who should save and restore $r1? Method x or method y?

MIPS Calling Convention
Q: Who should save and restore $r1? Method x or method y?

A: It depends.
1. Registers 16-23 (with symbolic names $s0 ... $s7), by convention, should be

preserved across function calls:
• referred to as: callee-save registers
• It is the callee's responsibility to save/restore registers if it wishes to use $s0 ... $s7.

2. All other registers are not preserved.
• referred to as: caller-save registers

• Wisely selecting to use callee-save or caller-save registers for local variables and
temporaries can reduce number of needed loads/stores (writing variables to
memory).
• Example: if method x knows that a local variable will not be needed after some

method call, it can be placed in a caller-save register -- and purposely not save it
to memory before the method call.

Parameter Passing Using Registers

• Would like to pass arguments to subroutines using registers (rather
than the stack) to save time.
• On MIPS, 4 registers, by convention, are used for passing arguments:

$a0 arg1

$a1 arg2
$a2 arg3

$a3 arg4

An Argument Passing Convention Using Both
Registers and Memory
One approach:
• caller passes arguments a1...a4 in registers
• caller passes arguments a5...an at end of

its own frame (in section marked Outgoing
Arguments)
• becomes Incoming Arguments of callee

• What if callee needs to write incoming register
args to memory?
• When would this happen? If callee needs to call

another method.

So, writing to memory cannot be avoided?
But the solution is not terrible.

1. leaf procedure: a procedure that doesn't call another procedure.
What proportion of procedures are leaves? It depends.

2. the callee may be finished with its use of an argument by the time it
needs to perform a function call

What if callee needs to write incoming register args to memory?
• caller also reserves space in its own frame for arg1 .. arg4 (before arg5)
• doesn't write anything there
• callee can use the designated space to write to memory

Return Address

• When a function returns, where in memory is
the next instruction to execute?
• Store the address where the next instruction

exists.
1. Either in the activation record
2. Or, in a register for faster access

$ra # register 31

• Non-leaf procedures will have to write the
return address to the stack frame.

Conclusion

Ideally, most values are maintained in registers, but:
1. Pass By Reference requires storing values in memory – variable

“escapes”
2. Spilled Variables: not enough registers exist – value written

temporarily to the stack frame

