
CSC 416/565:
DESIGN AND
CONSTRUCTION
OF COMPILERS
West Chester University
Dr. Richard Burns
Fall 2023

WHERE ARE WE?
• Scanning
• Parsing

NOW
• Final stages of compiler’s front-

end

Semantic Analyzer

• Type Checking: asks questions such as:
• In a stm or exp, do operands have proper types given the operator?

• + should have int operands, not bool operands

• Symbol Tables: asks questions such as:
• Are identifiers declared?

Today’s Roadmap

1. Parse trees
• (concrete) syntax trees vs. abstract syntax trees
• AST: central data structure for all post-parsing activities
• will be used in SA, symbol table construction, optimization, CG (Code Generation),

etc.
2. Generating parse trees

• JavaCC doesn't do this automatically. Two solutions:
1. JTB (Java Tree Builder) tool for an automatic solution.
2. Hand-write semantic actions into .jj file.

3. Motivate the "Visitor" SE design pattern.
• To traverse the parse trees.
• Each new functionality will be employed using Visitor pattern.

Syntax Trees

CONCRETE PARSE TREES
• Shows every detail of the parse

and matches the
grammar exactly.
• Results of grammar

transformations (left factoring,
left recursion, elimination of
ambiguity) are carried through.

ABSTRACT SYNTAX TREES
• Clean interface between parser

and later phases of compiler.
• Conveys phrase structure of

source program with parsing
issues resolved.

Concrete Syntax Trees
Grammar (unambiguous, left recursion removed, left factored) used in
parsing "became complicated":

E -> TE' T -> FT' F -> num
E' -> +TE' T' -> *FT’
E' -> -TE' T’ ->
E' ->

• (Concrete) Parse Tree for 5 * 3 + 2
• Do we really need the T’ and E’ productions in post-parsing compiler steps?

Abstract Syntax Trees

• Q: what is the abstract syntax of an
expression?
• Ambiguous for a grammar, but fine for abstract

syntax!
• The parser produces the parse tree (using more

a complicated, but unambiguous grammar)
• Parse tree disambiguates everything!
• AST is the starting point for the semantic

analysis of a program

SLPInterpreter (Prog Assn #1)

This is actually a parse tree, constructed using an OpExp object.

Stm s = new OpExp(new OpExp(5, "*", 3), "+", 2)

• No T' and E' were needed. We knew the * happens first
in this program because it was deeper in the parse tree.
• How can we generate a parse tree like this one? -- which

we will call an abstract parse tree.
• Big idea: an abstract parse tree disambiguates

an ambiguous grammar.

Efficient AST Data Structures

• Some AST nodes have a fixed number of children
• Example: binary addition and multiplication have two children

• Some P/L constructs may require an arbitrary large number of
children
• Example: compound statements (zero or more statements)
• method parameter and argument lists

Good AST Design

• The AST nodes must hold
sufficient information to
recall the essential elements
of the program fragment
they represent.
• It should be possible to un-

parse an AST into a form that
is sufficiently similar to the
program represented by the
AST.

AST Design

• Eventually will need to
think about the software
engineering and design of
the AST nodes

Given a source programming lang L, the development of a grammar
and the design of an appropriate AST structure typically proceeds as
follows:
1. An unambiguous grammar for L is devised.
• left recursion removed, left factored

2. An AST of L is devised.
• omit useless symbols such as , and ;

3. Semantic actions are placed in the grammar to construct the AST.
• (more on this later)

4. Phases of the compiler are designed.
• Each phase may place new requirements on the AST in terms of its structure

and contents.

Another Example

CONCRETE PARSE TREE ABSTRACT SYNTAX TREE

Position Information
A compiler that uses AST data structures need not do all the parsing and
semantic analysis in one pass.
• Lexer reaches <EOF> before semantic analysis even begins, so if semantic

error is detected during traversal of parse tree, the current position of the
lexer will not be useful.
• AST data structures must be sprinkled with pos fields.
• Lexer passes source file positions of beginning and end of each token to the

parser.
• Augment constructor calls to take a pos argument.

public class AssignStm extends Stm {
 String id;
 Exp exp;
 AssignStm(String i, Exp e) { id = i; exp = e; }
 int line, col;
 AssignStm(String i, Exp e, int l, int c) {
 id = i; exp = e; line = l; col = c;
 }
}

Semantic Actions

Semantic Actions

Possible to include semantic actions in most grammars (such as JavaCC)

Why is this useful?
• JavaCC uses recursive descent to (hopefully) make a successful

derivation of some input token stream
• It does not automatically produce any of the desired parse trees

(Some parsing tables can automatically produce concrete syntax trees.)
• (e.g. SableCC, JJTree extension to JavaCC, JTB extension to JavaCC, …)

MiniJava Abstract Syntax

How to build syntax tree for
x = y.m(1, 4+5);

MiniJava Grammar

• MiniJava grammar does not specify the precedence of operators!
• Need to make sure that multiplication occurs deeper in a parse tree

than addition, for an expression like 3 + 2 * 5

Solutions:
1. Rewrite grammar to capture Java precedence rules
2. Capture precedence in semantic actions

#1 Disambiguating Grammars for Operator
Precedence
• The removal of left recursion gets tricky (and ugly!)
• … as you may have noticed in Prog Assignment #3

Exp -> Exp op Exp

Original Grammar:

Rewritten for proper order precedence:

Rewritten to eliminate left recursion:
E -> TE'
E' -> +TE' | ε
T -> FT'
T' -> *FT' | ε
F -> num | id | (E)

E -> E + E | E * E | num | id | (E)

E -> E + T | T
T -> T * F | F
F -> num | id | (E)

Before: “goal” was only to determine if valid parse is possible
Now: also interested in semantics
• What is the result (or interpretation) of some expression?
• Want multiplication deeper in the parse tree than addition! (as long

as there are no parens)

A hand-crafted program (for determining
successful parse) using recursive descent, in
JavaCC-like syntax:

void T() :
{}
{
 F() TPrime()
}

void TPrime() :
{}
{
 [<TIMES> F TPrime()]
}

void F():
{}
{
 <INT>
 |
 <IDENTIFIER>
 |
 <LPAREN> E() <RPAREN>
}

Prompt: How can this code be modified
with semantic actions for interpreting?

E -> TE'
E' -> +TE' | ε
T -> FT'
T' -> *FT' | ε
F -> num | id | (E)

An Approach:
Have Methods Return Values
• Seems straight forward:
• E -> E+E (E returns value of E+E)

• ... but this was rewritten to ...
• E -> E+T (E returns value of E, added to what T returns)

• ... but this was rewritten to ...
• E -> TE'
• E' -> +TE' |ε

• E and E' should return ints...
• ...but the calculation of them doesn't seem as trivial anymore.

#2 Semantic Actions Can Be Specified in JavaCC
• … for building a simple mathematical interpreter, such as what's presented

in the JavaCC Lookahead tutorial
• … or for building an abstract syntax tree
• When an expression is parsed, the result of the expression is also

calculated along the way!

• Local variables can be primitives or objects.

General syntax of
JavaCC
productions:

returntype ProductionName() :
{
 // local variables that can be declared
}
{
 // RHS of production, augmented with semantic actions { }
}

JavaCC
Version

void Start() :
{ int i; }
{
 i=Exp() <EOF> { System.out.println(i); }
}
int Exp() :
{ int a,i; }
{
 a=Term()
 ("+" i=Term() { a=a+i; } | "-" i=Term() { a=a-i; })*
 { return a; }
}
int Term() :
{ int a,i; }
{
 a=Factor()
 ("*" i=Factor() { a=a*i; } | "/" i=Factor() { a=a/i; })*
 { return a; }
}
int Factor() :
{ Token t; int i; }
{
 t=<IDENTIFIER> { return lookup(t.image); }
 | t=<INTEGER_LITERAL> { return Integer.parseInt(t.image); }
 | "(" i=Exp() ")" { return i; }
}

More Precedence of Operators Also Needs to
Be Captured
From MiniJava Grammar:

What is the order of operator precedence in Java?

Exp -> Exp op Exp | Exp[Exp] | Exp.length |
 Exp.id(ExpList) | INT_LITERAL | true | false |
 id | this | new int [Exp] | new Id() | !Exp |
 (Exp)

Rewriting Grammar According to Precedence
Hierarchy

• Kleene closure on last line because of chaining.
• Notice how semantic checks are still postponed.
• Grammar now more complicated (concrete syntax tree would be too).
• Semantic actions that build AST simplify this complexity back to abstract

syntax; so, not as bad as it appears.

Exp -> AndExp
AndExp -> EqualityExp (&& EqualityExp)*
EqualityExp -> RelationalExp ((== | !=) RelationalExp)*
RelationalExp -> AdditiveExp ((< | <= | > | >=) AdditiveExp)*
AdditiveExp -> MultiplicativeExp ((+ | -) MultiplicativeExp)*
MultiplicativeExp -> UnaryExp ("*" UnaryExp)*
UnaryExp -> "!"UnaryExp | Primary
Primary -> (INT_LITERAL | true | false | id | this |
 "("Exp")" | new int "[" Exp "]" |
 new id "("")")
 ([Exp]|.length|.id(ExpList))*

Visitor Design Pattern

Visitor Design Pattern

Motivation:
• Given an AST, what is best way to traverse it for some task:
• e.g. interpreting it (Prog #1)
• semantic analysis (symbol table creation + type checking)
• code translation
• optimization
• etc.

• We will be doing many different tasks on the trees...

Next slides: thought process towards a good SE design

Idea #1:
Separate code for tasks
Functional Approach
• Ideas:

• extensive use of instanceof operator
• separate files for each task

• Interpreter.java
• Typechecker.java
• Optimizer.java
• …

int eval (Exp e) {
 if (e instanceof PlusExp)
 return eval(((PlusExp) e).e1) + eval(((PlusExp)e).e2);
 else if (e instanceof MinusExp)
 ...
}

• Every file has eval method.
• Implementation is task-specific
• eval method in Interpreter.java

From MiniJava abstract syntax:

Idea #1:
Separate code for tasks

If wanted to write a type checker (we will) … we would create TypeChecker.java

int eval (Exp e) {
 if (e instanceof PlusExp)
 return eval(((PlusExp) e).e1) + eval(((PlusExp)e).e2);
 else if (e instanceof MinusExp)
 ...
}

ADVANTAGES

• No need to recompile everything for
new task.

DISADVANTAGES
• Lots to type casting, not OO!
• If syntax changes (e.g. adding modulus

to P/L), need to modify all tasks
(interp.java,
typechecker.java) and
recompile everything

Idea #1:
Separate code for tasks

How to invoke in main?

// Interpreter.java
int eval (Exp e) {
 if (e instanceof PlusExp)
 return eval(((PlusExp) e).e1) + eval(((PlusExp)e).e2);
 else if (e instanceof MinusExp)
 ...
}

Exp e = ...;
println(Interpreter.eval(e)); // functional call

Alternative Idea #2:
Separate code for Abstract Syntax Classes
OO Approach
• Ideas:
• Each class has a method for each task

// PlusExp.java
public class PlusExp extends Exp {
 Exp e1, e2;
 PlusExp(Exp a1, Exp a2) { e1 = a1; e2 = a2; }
 int eval() {
 return e1.eval() + e2.eval();
 }
 void typeCheck() { ... }
 String generateCode() { ... }
}

• PlusExp.java

Alternative Idea #2:
Separate code for Abstract Syntax Classes

ADVANTAGES

• "easy" to change syntax (e.g. include
modulus): just make a new class and
define method for each task

DISADVANTAGES
• For a new task, need to modify every

class.
• Mixing pretty-printing code w/ flow

analysis code, etc.
• Difficult to maintain?

public class PlusExp extends Exp {
 Exp e1, e2;
 PlusExp(Exp a1, Exp a2) { e1 = a1; e2 = a2; }
 int eval() {
 return e1.eval() + e2.eval();
 }
 void typeCheck() { ... }
 String generateCode() { ... }
}

Alternative Idea #2:
Separate code for Abstract Syntax Classes

How to invoke in main?

Exp e = ...;
println(e.eval()); // OO call

// PlusExp.java
public class PlusExp extends Exp {
 Exp e1, e2;
 PlusExp(Exp a1, Exp a2) { e1 = a1; e2 = a2; }
 int eval() {
 return e1.eval() + e2.eval();
 }
 void typeCheck() { ... }
 String generateCode() { ... }
}

BEST Idea #3:
Visitor Design Pattern
Big NEW IDEA:
• Try to combine the best of both approaches.
• Want to separate the node classes from tasks/phases (interpreter,

type checker, optimizer, etc.)
• Found in OO approach

• Want to keep code for a task together
• Found in Functional approach

• Want to avoid frequent typecasts or use of instanceof
• Present in Functional approach

What is a Design Pattern?

• Could devote an entire SE course to design patterns
• there are lots of design patterns

• Guiding Principle: patterns are generally meant to save time and
effort in developing and maintaining software
• patterns simplify software construction
• initially, may seem to be complicating it

Recall OO Approach – Node types combined with Tasks – BAD!

abstract class Exp {
 public abstract int eval();
}
public class PlusExp extends Exp {
 private Exp e1,e2;
 public PlusExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
 public int eval() {
 return e1.eval()+e2.eval();
 }
}
public class MinusExp extends Exp {
 private Exp e1,e2;
 public MinusExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
 public int eval() {
 return e1.eval()-e2.eval();
 }
}
...
public class IntegerLiteral extends Exp {
 private String f0;
 public IntegerLiteral(String n0) { f0 = n0; }
 public int eval() {
 return Integer.parseInt(f0);
 }
}

Visitor Approach –
Node types separate
from Tasks – GOOD!

// Visitor.java
public interface Visitor {
 public int visit(PlusExp n);
 public int visit(MinusExp n);
 public int visit(TimesExp n);
 public int visit(DivideExp n);
 public int visit(Identifier n);
 public int visit(IntegerLiteral n);
}

// Interpreter.java
public class Interpreter implements Visitor {
 public int visit(PlusExp n) { return n.e1.accept(this)+n.e2.accept(this); }
 public int visit(MinusExp n) { return n.e1.accept(this)-n.e2.accept(this); }
 public int visit(TimesExp n) { return n.e1.accept(this)*n.e2.accept(this); }
 public int visit(DivideExp n) { return n.e1.accept(this)/n.e2.accept(this); }
 public int visit(Identifier n) { return lookup(n.f0); }
 public int visit(IntegerLiteral n) { return Integer.parseInt(n.f0); }
}

From MiniJava
abstract syntax:

Visitor Approach –
Node types separate
from Tasks – GOOD!

public abstract class Exp {
 public abstract int accept(Visitor v);
}
public class PlusExp extends Exp {
 public Exp e1,e2;
 public PlusExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
 public int accept(Visitor v) { return v.visit(this); }
}
public class MinusExp extends Exp {
 public Exp e1,e2;
 public MinusExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
 public int accept(Visitor v) { return v.visit(this); }
}
public class TimesExp extends Exp { … }
public class DivideExp extends Exp { … }
public class Identifier extends Exp {
 public String f0;
 public Identifier(String n0) { f0 = n0; }
 public int accept(Visitor v) { return v.visit(this); }
}
public class IntegerLiteral extends Exp {
 public String f0;
 public IntegerLiteral(String n0) { f0 = n0; }
 public int accept() { return v.visit(this); }
}

Exp.java
PlusExp.java
MinusExp.java
TimesExp.java
DivideExp.java
Identifier.java
IntegerLiteral.java

BEST Idea #3:
Visitor Design Pattern

How to invoke in main?

Exp e = ...;
e.accept(new Interpreter());

BEST Idea #3:
Visitor Design Pattern

ELEMENTS/AST CLASSES:
• Each element/node has

an accept() method that takes a
visitor as an argument.

• The method calls a visit() method
of the visitor, passing itself as an
argument.

VISITORS/TASKS:
• visitor interface (Visitor.java)

• list types of "elements"/AST node classes

• ensures we implement task on each one
• class for each

task (e.g. Interpreter.java, TypeChecking.java);
implements the interface

• overloaded visit() method for each element
• the visit() method performs the interesting parts

of the tasks

Maintain two class hierarchies:
1. "elements" being operated on (the nodes, the AST classes)
2. the "visitors" that define operators on the "elements" (the interpreter, type checker,

code generator, etc.)

BEST Idea #3:
Visitor Design Pattern

Visitor pattern implements double dynamic dispatch:
1. dynamic (polymorphism) type of the node element
2. dynamic type of the visitor (task - e.g. Interpreter)

Exp e = ...;
e.accept(new Interpreter());

