CSC416/565:
DESIGN AND
CONSTRUCTION
OF COMPILERS

West Chester University
Dr. Richard Burns
Fall 2023

PREVIOUS CLASSES TODAY
* Top-down parsing * Bottom-up Parsing

* Recursive descent, requires
backtracking

* Predictive parsing: LL(1),
deterministic

Weakness of LL(k) parsing techniques is that they must predict which production to use, after having seen only k tokens.

Bottom-up Parsing Overview

 Builds on ideas of top-down parsing
* More powerful than top-down

* Postpones “reduction” decision until it has seen input tokens
corresponding to the entire RHS

Benefits of Bottom-up Parsing

* (not as restrictive as top-down)
e Left-factoring not necessary

 Elimination of left-recursion unnecessary (because parse tree is built
from the leaves up)
* Right-recursion is not a problem, but may lead to some inefficiencies

* Ambiguous grammars remain problematic
* (as they should!)

Bottom-up Parsing

* Most basic bottom-up parsing technique is LR(k) parsing
* Reading input left-to-right
e Using a rightmost derivation
e With k tokens of lookahead

* /dea: bottom-up parsing reduces a string to the start symbol by inverting
productions

 How? Similar to LL(1) predictive parsing:
e a parse table is first build based on the grammar

* At compile time, the driver reads the input tokens, consults the parse table, and
creates a parse from the bottom up

Grammar:

Example

E-T+E | T
|

Observe what a bottom-up parse looks like:

* How to know which reductions to use,
and when to use them?

* Notice: going down-to-up, a rightmost
derivation is present

* Eventually reduce, and build complete
tree, all the way to the start symbol

* Each step combines subtrees into larger
trees

Shift / Reduce

* Shift / Reduce: the main strategy used by all bottom-up parsers
* There are a number of LR-parsing variants: (SLR, LALR, ...)
* All use the same driver
* Only differ in the generated table

Parsing Driver for “LR”-family

e Parser has a stack and input.
* Driver reads the input and consults the parsing table.

* Parsing table contains shift and reduce entries.
* Initially:

e Stack is empty

* Parser is at the beginning of input

* Shift: move the next input token onto the top of the stack; bump the input
pointer

* Reduce: use a grammar rule “reduction”

* Example: given rule X - ABC, and top of the stack is CB A, pop C B A (the
RHS) and push X (the LHS) onto stack

* Note: only ever pushing nonterminals onto the stack in reductions

Example

Grammar:

E-T+E | T
|

Input String:

int * int + 1int

LR(1) Parse Table Driver Examples

Example 1
Stack
1 a :=7
1 idg = 7
11d4 :=¢ 7
1id4 1= NuUmMjiqQ
11dg :=¢ Eqg
182
152:3
18233 idg
182;3 idg :=¢
1 82;3 idg :=¢ idyg
18233 idg :=¢ Eqq
182:3 id4 : =6 E11 +16
152:3 1d4 :=¢ E11 +16 (8
182;3 idq :=¢ E11 +16 (gids
152;:3 idq :=¢ E11 +16 (gidg
158233 1dg :=¢ Eq1 +16 (gidg
152;3 idq :=¢ E11 +16 (gidg
182:3 1d4 : =6 E11 +16 (81d4
152:3 1dq :=¢ E11 +16 (gidg
152;:3 idq :=¢ E11 +16 (gids
152;:3 idg :=¢ E11 +16 (gidg
152;:3 id4 :=¢ E11 +16 (8 S12
182;:3 id4 :=¢ E11 +16 (8 S12
152;:3 id4 :=¢ E11 +16 (8 S12
158233 1dg :=¢ E11 +16 (8 S12
152;:3 id4 :=¢ E11 +16 (8 S12
152:3 1d4 :=¢ E11 +16 E17
18233 idg :=¢ Eqq
15233 S5

152

oo oovoouo

I
o B BN e Be B e BN e BN e B B!

+ 4+ + + + 4+ + 4+ + o+ o+
[OTRNCTRN TR TRy o TR o TR o PRY o TR o P P @ PR P o 1

1=6

1= Numjo

1=¢ Eq1

:=6 E11 +16

:=¢ E11 +16 numyg
:=¢ E11 +16 E17
1=¢ Eqg

,18

»18 idg
18 E21
18 E21)22

-
IIE

GG IR RGO R I NI B R RGO
+ 4+ 4+ + + 4+ + 4+ 4+ + + + + 4+
AN OGO OO OO O O O O O O

[oTpN o TRy o TRy o TN o Y o P o P o TR o i o T o TR o T o TR o PR o PR o T o PR o PR o PR e P e MR o Pl o}

PO OO PP PP PLL PP

Action

shift

shift

shift

reduce E — num
reduce S — id: =E
shift

shift

shift

shift

reduce E — id
shift

shift

shift

shift

shift

reduce E — num
shift

shift

reduce E — num
reduce E - E + E
reduce S — id: =E
shift

shift

reduce E — id
shift

reduce E — (S, E)
reduce E > E + E
reduce S — id: =E
reduce S — S; S
accept

00O ~J AN B W=

2

3

id num print ; , + = () $ S E L
s7 g2
s3 a
s7 g5
s6
rl rl rl
s20 s10 s8 gll
s9
s4 s7 gl2
s20 s10 s8 gl5 gl4
r5 r5 r5 r5 r5
2 2 sl6 r2
s3 s18
3 3 r3
s19 sl13
r8 r8
s20 s10 s8 gl7
6 r6 sl6 r6 r6
s20 s10 s8 g21
s20 s10 s8 g23
r4 r4 r4 r4 r4
s22
17 17 r7 17 r7
9 sl6 9
S S: S s E—id
S idi.- E s E — num s L—>FE
S '.t(L) ¢« E—>E + E vy L—> L, E
prt , E— (S, E)

=

J=

=

B
[we up [ue [we [ue [ue [wue [ue Jup Juw [up Twe |

State b c d q | $ | Start B C
Example 2 o[E @] 8 8 | 8 | accept B
1 (1] 4
iz E 8 8 8| 8 [E
3 | 8| 8 | (9]
4 |
5 10 10
6 6 6
7 9 9
8 1
s @] 4 [
10 @]
11 3 | 3
12 5
1 Start— S § 13 7 7|7
2SS —=AC
3C =c¢ 14 2
4 | A
5A —aBCd
6 | BQ
7B —>bB
8 | A
9Q -—q
10 | A
Rule Derivation
1 Start =_ S $
2 =2..AC$
3 =.ACS
5 =.,aBCdc$
4 =..,aBdc$
7 =m.abBdc$
7 =mabbBdc$
8 =mabbdc$

=

=2 = |~>|~>]

=

[z 1=

|
[eo|ewn]
Iwiﬂl

[=

=

X X2 O3 X2 O3 T

olno]ve]

nm

[em[cw|ecm|cw]

Start
0

Initial Configuration
shifta
shiftb
shiftb

Reduce A to B
shift B
Reduceb Bto B
shift B
Reduceb Bto B
shift B
Reduce A to C
shift C
shiftd

Reducca B C dto A
shift A
shiftc

Reduce cto C
shift C
Reduce A Cto S
shift S
shift §

Reduce S $ to Start

shift Start
Accept

abbdc$
bbdc$
bdc$
de$
Bdc$
dc$
Bdc$
de$
Bdc$
dc$
Cdc$
dc$
c$

Ac$

c$

Cs

Ss

Start $

Example 3

State

GOTO
E T

Gl G8

S2 Rl

G3

R5 RS

G6 G8

S7

S2

R4

R4 R4

R N Q= WDN=O

ok~

P—E
E-E+T
E—->T

. T—>id(E)
. T —id

Stack Symbols | Input Action

0 id (id +id) $ | shift4

04 id (id+id) $ shift 5

045 id (id+id) $ shift 4

0454 id (id +id) $ reduce T — id
0458 id(T +id) $ reduce E — T
0456 id (E +id) $ shift 2

04562 id (E + id) $ shift 4
045624 |id(E+id |)$ reduce T — id
045623 |id(E+T |)$ reduceE - E+ T
0456 id (E)$ shift 7

04567 id(E) $ reduce T — id(E)
08 T $ reduce E —» T
01 E $ accept

LR(0) Automaton for the
Previous Slide

start

State O
P-.E
E-.E+T
E-.T
T->.id(E)
T-.id

accept

E State 1 +
P-E.
E-E.+T

State 2
E-E+.T
T-.id(E)
T-.id

id

T-id.(E) fe——-:7

State 5
T-id(.E)
E->.E+T
E-.T
T-.id (E)
T-.id

State 8
E-T.

T-id(E.)
E-E.+T

State 6

T-id(E).

State 7

State 3
E-E+T.

LR(O0) Automaton

* LR(0) automaton represents all possible rules that are currently under
consideration by a shift-reduce parser

* Each box represents a state in the machine, connected by transitions
for both terminals and in the grammar

e State contains multiple items augmented by a dot (.) to indicate
parser’s current position

Example:
E>FE.+T

Indicates E is currently on the stack and + T is a possible next sequence of tokens

Grammar: 1.P—> E
2. E—-E+T

3. E—-T

Construction of Automaton 4T id(E)

5. T —-id

e Start production, with a dot (.) at the beginning of the RHS, becomes
State O (first item is sometimes called the kernel of the state)

e Recursively compute the closure of this state and add as additional
items in the same state until no more can be added

e Closure: For each item in the state with a non-terminal X immediately to the
right of the dot (.), add all rules in the grammar that have X as the LHS

Closure of State 0

Kernel of State 0 P—.E
E—-.E+T

P>.E E—-.T
T—.id(E)
T—.id

. Closure of State 0 Grammar: 1.P S E
Construction of —_— 2 EoEeT
Automaton (cont.) e T 5T

T—.id(E)
T —.id

 All terminals and non-terminals to the right of the dot (.) are possible
outgoing transitions

* If the automaton takes that transition it makes a new state containing
the matching items, with the dot (.) moved one place to the right

Transition on E: Transition on T Transition on id:
P—-E. T—id. (E)
ESE.+T S=ak T—id.

start accept

A
$
StafeO
P->.E State 2
E-.E+T | E [5@l | + |glEs.T
Eos. T O ElE LT[| T-.id(E)
T-.id(E) : T-.id
T-.id
id T
State 5
id T-id(.E)
, I E->.E+T State 3
T2d(B) o= E>'T + E-E+T.
—” T-.id(E)
T-.id
T E
State 6
E’tjjt?s TSid(E.)
: E-E.+T
)
State 7

T-id(E).

T—>id.(E)

Shift-Reduce Conflict:)
T—id.

LR(O0) Automaton

S—id(E).

Reduce-Reduce Conflict: E—id(E).

e LR(0) automata enumerate choices available at any step of the parse

A state containing an item with a dot (.) at the end indicates a
possible reduction

* A transition on a terminal that moves the dot (.) one position to the
right indicates a possible shift

* Two types of conflicts can appear in an LR grammar:

1. shift-reduce conflict indicates a choice between a shift action and a reduce
action

2. reduce-reduce conflict indicates that two distinct rules have been
completely matched

SLR Parse Table Creation.

Given a grammar G and corresponding LR(0) automaton,
create tables ACTION][s, a] and GOTO[s, A] for all states s,
terminals a, and non-terminals A in G.

For each state s:

For each item like A > «a.a

ACTION[s, a] = shift to state ¢t according to the LR(0) automaton.
For each item like A - a. B 3

GOTO[s, B] = goto state ¢t according to the LR(0) automaton.
For each item like A — «..

For each terminal a in FOLLOW(A):

ACTION[s, a] = reduce by rule A — «

All remaining states are considered error states.

start accept

$
" State 0
Concluding Thoughts e e
AR e RTINS NN e L PN s 0
¥aﬁg(5) gk& E~E.+T {84} |15 059 {5.+}
=1 ,+
* SLR is a subset of LR(1) and / * d T
not all LR(1) grammars are SLR | saes e | LB oS
: d T-id. + :
* In practice, a LR(1) automaton /
is used with an algorithm - / \
known as Lookahead LR 1 Eer G seens e 85 oy w5 e
LALR 2RE o ERR
aw
e All items in the automaton are T (/id a e
augmented with a lookahead of \
State 12 \
the set of tokens that could 2960 (el s n lafeLe S0,
potentially follow it Toe () EoErT b [130F))
T-.id {+)}
) T
State 14 State 11

T-id(E). {+,)} E-E+T. {+.)1}

After the Break

Parsing Tools and an introduction to Programming Assignment #3.

Parsing Tools

Task of constructing a parser is simple enough to be automated.

JavaCC — LL(k) Parser Generator

* JavaCC generates a top-down, recursive-descent parser.

Productions written in the form:

volid Assignment () : { } { Identifier () "=" Expression() ";" }

to capture the rule:

Assignment — Identifiler = Expression

Perhaps better written, using tokens for terminals, as:

vold Assignment () : { } { Identifier () <EQUALS> Expression() <SEMICOLON> }

JavaCC will detect left recursion, which must be eliminated.

JavaCC syntax:

1. curly braces for { Java
Declarations}
* Will use these in next part of

Example:

StmList — Stm | StmList ; Stm

the course
void StmList () : 2.{Rule Definitions} used
{ } to specify the RHS of productions

{ Stm{()
| StmList () <SEMICOLON> Stm()

Would produce the error:
Left Recursion detected:" "StmList ... — StmList

Example

JavaCC fragment:

* |s this grammar LL(1)?
* |t could be after left-factoring.

* |s this grammar LL(2)?
* Probably yes
e But LL(1) tables are much smaller and desirable

* There are no parsing tables in recursive descent
anyway!

Lookahead

JavaCC Solution:

e TOOKAHEAD directive will allow
JavaCC to use more than one token for
lookahead

* JavaCC will look at the next two
symbols before deciding which rule to

use void S(): {}
* Lookahead directives are placed at {
“choice points” LOOKAHEAD (2) "a"™ "b" "c"
* Places in the grammar where there is |
more than one possible rule that can ngnmongn onow

match

Grammar:

Example 2
S —» a(bc|bd)

One solution using lookahead of only 2:

void S(): {}
{

Ha" (LOOKAHEAD(Z) ("b""C") | ("b""d"))

}
NOTE: this wouldn’t work

void S(): {}
{

LOOKAHEAD (2) "a" ((Hb" "C") | (Hb" "d"))

J

Alternative: could have also factored b out and avoided the lookahead

Other Notes

* JavaCC can provide a parser for some grammars that are not LL(1)

* the parser that is produced is not guaranteed to correctly parse the
language described by the grammar

e a warning will be issued when JavaCC is run on a non-LL(1) grammar
e for a non-LL(1) grammar, the rule that applies first will be used

* LOOKAHEAD suppresses warning messages
 JavaCC assumes that you know what you are doing

Error Recovery

* What should happen when the parser encounters an error?

* Not only report the first error, but ideally recognize all of the errors in
a program.

* /dea: provide additional grammar rules for error capturing and how
far ahead to "skip" to get past error, and to try and resume parsing

Original Grammar:

exXp — Id

exp — exp + exp

exp — (exps)
exps — exp
exps — exXps ;

exp

New Grammar Rule for errors:

exp — (error)
exXps — error ; exp

Idea: skip to the next ; or)

* keep discarding input symbols until a lookahead is reached.
* neither JavaCC nor SableCC supports the error symbol (yacc does)

Shallow Error Recovery

Grammar Rule: void Stm ()

{}
Stm - IfStm | WhileStm {

Tf£Stm ()

|
WhileStm()

error skipto (SEMICOLON)

J

* will catch if next token is not <IF> or <WHILE> keyword

* Need to manually define a procedure that will keep skipping tokens
until a ; and then try to resume

volid Stm()

{}
Deep Error Recovery §

try {

(
I£Stm ()

WhileStm ()

)

} catch (ParserException e) ({}
error skipto (SEMICOLON) ;

}

* will catch deeper errors

e one advantage of JavaCC (and recursive descent parsers) is that they
know which production they are in when the error happened

* eg.wasinan I£Stm ()

Global Error Repair

* finds the smallest set of insertions and that would turn the source string
into a syntactically correct string

* one algorithm: "Burke-Fisher error repair”

* tries every possible single-token insertion, deletion, or replacement, at every point no earlier
than K tokens before the point where the parser reported the error

 Example: if K=10, if parsing engine gets stuck at the 50th token, try every possible repair
between 40th and 50th token.

e correction that allows the parser to parse furthest beyond the original reported error is taken
as best error repair.

* in general, repairs that carry parser 4 tokens beyond the original error are "good
enough"
* benefits of technique:

1. grammar is not modified with error productions
2. parsing table is not modified

. Burke-FIisher is not implemented in JavaCC, but that would be an interesting
project!

