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PREVIOUS CLASSES
• Top-down parsing
• Recursive descent, requires 

backtracking
• Predictive parsing: LL(1), 

deterministic

TODAY
• Bottom-up Parsing

Weakness of LL(k) parsing techniques is that they must predict which production to use, after having seen only k tokens.



Bottom-up Parsing Overview

• Builds on ideas of top-down parsing
• More powerful than top-down
• Postpones “reduction” decision until it has seen input tokens 

corresponding to the entire RHS



Benefits of Bottom-up Parsing

• (not as restrictive as top-down)
• Left-factoring not necessary
• Elimination of left-recursion unnecessary (because parse tree is built 

from the leaves up)
• Right-recursion is not a problem, but may lead to some inefficiencies

• Ambiguous grammars remain problematic
• (as they should!)



Bottom-up Parsing

• Most basic bottom-up parsing technique is LR(k) parsing
• Reading input left-to-right
• Using a rightmost derivation
• With k tokens of lookahead

• Idea: bottom-up parsing reduces a string to the start symbol by inverting 
productions

• How? Similar to LL(1) predictive parsing:
• a parse table is first build based on the grammar
• At compile time, the driver reads the input tokens, consults the parse table, and 

creates a parse from the bottom up



Example

Observe what a bottom-up parse looks like:
• How to know which reductions to use, 

and when to use them?
• Notice: going down-to-up, a rightmost 

derivation is present
• Eventually reduce, and build complete 

tree, all the way to the start symbol
• Each step combines subtrees into larger 

trees

Grammar:

E → T + E | T
T → int * T | int | ( E )



Shift / Reduce

• Shift / Reduce: the main strategy used by all bottom-up parsers
• There are a number of LR-parsing variants: (SLR, LALR, …)
• All use the same driver
• Only differ in the generated table



Parsing Driver for “LR”-family

• Parser has a stack and input.
• Driver reads the input and consults the parsing table.

• Parsing table contains shift and reduce entries.
• Initially:

• Stack is empty
• Parser is at the beginning of input

• Shift: move the next input token onto the top of the stack; bump the input 
pointer
• Reduce: use a grammar rule “reduction”
• Example: given rule X → ABC, and top of the stack is C B A, pop C B A (the 

RHS) and push X (the LHS) onto stack
• Note: only ever pushing nonterminals onto the stack in reductions



Example

Grammar:

E → T + E | T
T → int * T | int | ( E )

Input String:

int * int + int



LR(1) Parse Table Driver Examples



Example 1



Example 2



Example 3



LR(0) Automaton for the 
Previous Slide



LR(0) Automaton

• LR(0) automaton represents all possible rules that are currently under 
consideration by a shift-reduce parser
• Each box represents a state in the machine, connected by transitions 

for both terminals and non-terminals in the grammar
• State contains multiple items augmented by a dot (.) to indicate 

parser’s current position

Example:
E → E . + T

Indicates E is currently on the stack and + T is a possible next sequence of tokens



Construction of Automaton

• Start production, with a dot (.) at the beginning of the RHS, becomes 
State 0 (first item is sometimes called the kernel of the state)
• Recursively compute the closure of this state and add as additional 

items in the same state until no more can be added
• Closure: For each item in the state with a non-terminal X immediately to the 

right of the dot (.), add all rules in the grammar that have X as the LHS

Grammar:



Construction of 
Automaton (cont.)

• All terminals and non-terminals to the right of the dot (.) are possible 
outgoing transitions
• If the automaton takes that transition it makes a new state containing 

the matching items, with the dot (.) moved one place to the right

Grammar:





LR(0) Automaton

• LR(0) automata enumerate choices available at any step of the parse
• A state containing an item with a dot (.) at the end indicates a 

possible reduction
• A transition on a terminal that moves the dot (.) one position to the 

right indicates a possible shift
• Two types of conflicts can appear in an LR grammar:

1. shift-reduce conflict indicates a choice between a shift action and a reduce 
action

2. reduce-reduce conflict indicates that two distinct rules have been 
completely matched





Concluding Thoughts

• SLR is a subset of LR(1) and 
not all LR(1) grammars are SLR
• In practice, a LR(1) automaton 

is used with an algorithm 
known as Lookahead LR 
(LALR)
• All items in the automaton are 

augmented with a lookahead of 
the set of tokens that could 
potentially follow it



After the Break

Parsing Tools and an introduction to Programming Assignment #3.



Parsing Tools

Task of constructing a parser is simple enough to be automated.



JavaCC – LL(k) Parser Generator

• JavaCC generates a top-down, recursive-descent parser.
Productions written in the form:

void Assignment() : { } { Identifier() "=" Expression() ";" }

to capture the rule:
Assignment → Identifier = Expression;

Perhaps better written, using tokens for terminals, as:
void Assignment() : { } { Identifier() <EQUALS> Expression() <SEMICOLON> }



JavaCC will detect left recursion, which must be eliminated.

JavaCC syntax:
1. curly braces for {Java 
Declarations}
• Will use these in next part of 

the course
2.{Rule Definitions} used 

to specify the RHS of productions

Example:

StmList → Stm | StmList ; Stm

Would produce the error:
Left Recursion detected:" "StmList ... → StmList ...

void StmList() :  
{ }               
{ Stm()             
  | StmList() <SEMICOLON> Stm()  
}



Example

JavaCC fragment:

void S(): {} 
{ 
    "a" "b" "c" 
    | 
    "a" "d" "c" 
}

• Is this grammar LL(1)?
• It could be after left-factoring.

• Is this grammar LL(2)?
• Probably yes
• But LL(1) tables are much smaller and desirable
• There are no parsing tables in recursive descent 

anyway!



Lookahead

JavaCC Solution:
• LOOKAHEAD directive will allow 

JavaCC to use more than one token for 
lookahead
• JavaCC will look at the next two 

symbols before deciding which rule to 
use
• Lookahead directives are placed at 

“choice points”
• Places in the grammar where there is 

more than one possible rule that can 
match

void S(): {} 
{ 
    "a" "b" "c" 
    | 
    "a" "d" "c" 
}

void S(): {} 
{ 
    LOOKAHEAD(2) "a" "b" "c" 
    | 
    "a" "d" "c" 
}



Example 2

void S(): {}
{    
    "a" (LOOKAHEAD(2)("b""c")|("b""d"))
}

void S(): {}
{    
    LOOKAHEAD(2) "a" (("b""c")|("b""d"))
}

One solution using lookahead of only 2:

NOTE: this wouldn’t work

Alternative: could have also factored b out and avoided the lookahead

Grammar:

S → a(bc|bd)



Other Notes

• JavaCC can provide a parser for some grammars that are not LL(1)
• the parser that is produced is not guaranteed to correctly parse the 

language described by the grammar
• a warning will be issued when JavaCC is run on a non-LL(1) grammar
• for a non-LL(1) grammar, the rule that applies first will be used
• LOOKAHEAD suppresses warning messages
• JavaCC assumes that you know what you are doing



Error Recovery

• What should happen when the parser encounters an error?
• Not only report the first error, but ideally recognize all of the errors in 

a program.
• Idea: provide additional grammar rules for error capturing and how 

far ahead to "skip" to get past error, and to try and resume parsing



Idea: skip to the next ; or )
• keep discarding input symbols until a lookahead is reached.
• neither JavaCC nor SableCC supports the error symbol (yacc does)

Original Grammar:

exp → Id
exp → exp + exp
exp → (exps)
exps → exp
exps → exps ; exp

New Grammar Rule for errors:

exp → (error)
exps → error ; exp



Shallow Error Recovery

• will catch if next token is not <IF> or <WHILE> keyword
• Need to manually define a procedure that will keep skipping tokens 

until a ; and then try to resume

Grammar Rule:

Stm → IfStm | WhileStm

void Stm() : 
{} 
{ 
    IfStm() 
|   
    WhileStm() 
|   
    error_skipto(SEMICOLON) 
}



Deep Error Recovery

• will catch deeper errors
• one advantage of JavaCC (and recursive descent parsers) is that they 

know which production they are in when the error happened
• e.g. was in an IfStm()

void Stm() :
{}
{
    try {
        (
            IfStm()
        |
            WhileStm()
        )
    } catch (ParserException e) {}    
        error_skipto(SEMICOLON);
    }
}



Global Error Repair
• finds the smallest set of insertions and deletions that would turn the source string 

into a syntactically correct string
• one algorithm: "Burke-Fisher error repair”

• tries every possible single-token insertion, deletion, or replacement, at every point no earlier 
than K tokens before the point where the parser reported the error

• Example: if K=10, if parsing engine gets stuck at the 50th token, try every possible repair 
between 40th and 50th token.

• correction that allows the parser to parse furthest beyond the original reported error is taken 
as best error repair.

• in general, repairs that carry parser 4 tokens beyond the original error are "good 
enough"
• benefits of technique:

1. grammar is not modified with error productions
2. parsing table is not modified

• Burke-Fisher is not implemented in JavaCC, but that would be an interesting 
project!


