West Chester University
Dr. Richard Burns
Fall 2023

CSC 416/565:
DESIGN AND
CONSTRUCTION
OF COMPILERS

LAST CLASS TODAY

Predictive Parsing * Left Recursion
Algorithm: Recursive Descent

* Motivation: Recursive Descent
parsing algorithm does not work
with grammars that are left
recursive.

Recursive Descent parsing algorithm does not
work with grammars that are left recursive.

Unable to use this grammar
w/ recursive descent:

E
T

VLbl

[W

- T T
/ F | F
E

Why? Infinite loop

boolean E 1() { return E() && advance(PLUS) && T(); }

boolean E() { ... ; return E 1() [] ... }

Definition: A left-recursive grammar has some non-terminal S,
such that S=>*Sa, where a is any combination of zero or more terminals
or non-terminals.

* A production is left recursive if its LHS symbol is also the first symbol
of its RHS.

 >*means one or more derivation steps...
e " ..eventually derives to”

It is still possible to make derivations with a grammar that is left
recursive.

* Often easier to understand left-recursive grammars than those
modified to not be left-recursive.

Example Grammar:
S - SQ'B

 What is the language defined by this left-recursive grammar?
e Rewrite left-recursive grammar so that it uses right recursion instead.

A general rule to eliminate left recursion

* A left-recursive grammar has the form:

X - A

e where a does not start with X

* All strings derived from grammar will start with a, and continue with
Zero or more y.

* Can rewrite using right-recursion as:

X - X'
X' o yX'| €

Example: expression-term grammar

Left-recursive grammar: Right-recursive grammar:

E - E + T
E - T

Can work for multiple productions

e Left recursive:
N%NallNOLz--- | NamlBllBZ"" | Br

 Transformation, introducing new nonterminal N’

N >B:N[B,N|..|BN
N'>a;N|ao,N|..|]a,N|¢€

* More examples in [Thain]

Example

* Removing left-recursion that spans multiple productions is trickier.

S - A aly
A - SPB

* |eft-recursive because: S —* SPa
* ... more complicated general algorithms exist

Predictive Parsing

* New Idea: in predictive parsing, parser can predict which production
to use, simply by looking at the next few tokens:

* No backtracking! (as we had in Recursive Descent in the last class)

* Works only when the next few tokens provide enough information
about which production to use.
* no more choices to make
* bad/incorrect choices not possible

Predictive Parsing

Predictive parsers accept LL (k) class of grammars:
Will parse the input:

e l[eft-to-right ("first L")

e [eftmost derivation ("second L")

* using k "tokens of lookahead"
* k=1:if we can look at next token and always know which production to use

Grammar:

Example

E - T | T + E
T - int | int * T | (E)

Some issues:

* With 1 symbol of lookahead, we may know that our next token
is <int>, but not enough information to choose which T production
rule to apply.

* Sometimes referred to as prediction conflicts caused by common
prefixes

* [dea: Left factor the grammar when two productions for the same
nonterminal start with the same symbols.

Left Factoring

* "Take the allowable 'endings' and make a new nonterminal to stand
for them.”

* "Re-write the productions to defer the decision about which

production to use in predictive parsing until enough of the input has
been seem that we can make the right choice.”

Example

Grammar:

E - T | T + E
T - int | int * T | (E)

Apply left factoring.

Another Example

Grammar:

S - 1f E then S else S
S - 1f E then S

Apply left factoring.

Note: Can't simply just increase the lookahead. Rewriting the grammar is necessary.

LL(1) Parsing Tables

* From a left-factored grammar, going to create a parsing table.

* Parser will use this table to create parse tree, by performing one left-
to-right pass on the input, with a leftmost derivation, using 1 symbol

of lookahead.

* Components:
* left column: current leftmost nonterminal in parse tree

* top row: next input token
* each table cell entry: information about which production to use to expand

the current nonterminal

O O NANUTT = WODN -

Lookahead
S—-ACES Nonterminal |a b ¢ d q $
C—oc S T 1 1 1 1
| A C 2 3 3
A—-aBCd A 4 5 5 5 5
| B Q B 6 7 7 7 7
B—-bB Q 9 8§ 9
| A
Q-q Figure 5.10: LL(1) table. The blank entries should trigger error actions
| A in the parser.

Grammar is augmented with the S — ES$ production.

S - ES$
T > FT
E ->TEFE F —id
T"—> xFT’ F — num
E'—-+TFE T"— | FT F— (E)
E'—- —TFE T —
E' —
GRAMMAR 3.15.
+ * id () $
S S— ES$ S— E$
E E—-TE E—>TE
E' | EE > +TF' E'—- E —
T T - FT'" T — FT’
T’ T — T" — xFT’ T7"—> T —
F F—id F — (E)
TABLE 3.17. Predictive parsing table for Grammar 3.15. We omit the

columns for num, /, and -, as they are similar to others in
the table.

Alg. for processing input stream using parsing
table

* Maintain frontier (fringe) of parse tree as a stack.

* stack will contain non-terminals that have yet to be expanded and terminals
yet to be matched against the input

e top of stack: leftmost terminal or nonterminal

* Initialize stack to start symbol.

* Iterate until:
* reject on error state
e accept on end of input and empty stack

S - ES$

Example R

E ->TF F —id
T"—> xF T’ F — num
El - +TE T"—> | FT F— (E)
; E'— —TE T —
Input String: N
ld‘|‘ld$ GRAMMAR 3.15.
+ g id () $
S S— ES$ S — ES$
E E—-TE E—>TE
E' | EE - +4TF' E'—- E —
T T - FT'" T — FT'
T’ T — T' — xFT’ "> T —
F F—id F — (E)
TABLE 3.17. Predictive parsing table for Grammar 3.15. We omit the

columns for num, /, and -, as they are similar to others in
the table.

 Grammars parsable with LL(1) parsing tables are called LL(1)
grammars.

 Grammars parsable with LL(2) parsing tables are called LL(2)
grammars, and so on...

e for LL(k), columns are every sequence of k terminals.
* tables grow very large
* LL(1) only table used in practice

* Duplicate entries in a parsing table & grammar is ambiguous.
* No ambiguous grammar is LL(K) for any k.

* How to construct a parsing
table for a LL(1) grammar.

After the Break

BEFORE THE BREAK

* finished with example that
used a LL(1) parsing table to
perform derivation on input
token stream

NOW

 How can we construct LL(1)
parsing table?

* Intuition: during the parsing
process, we have:

1. the leftmost nonterminal on the
fringe that we're ready to
expand

2. the next token

Parsing Table Construction

Motivation: FIRST and FOLLOW Sets

 Example table entry in LL(1) Parsing Table: T [X, t] = Y
* Under what conditions should the parser use the production rule:

Scenario #1

Y can derive t in the first position.
Y - t7Z
Using this move would be a good idea ...
eventually the parser could match the t.
t € FIRST(Y)
The terminal/symbol t is one of the things
that Y can produce in the very first position.

There may be others that Y could also produce.

Scenario #2
* Y reducesto e, t follows Y in a derivation.
Y » * t
t & FIRST (Y)
Y -* €

* This production rule is still useful if parser can get
rid of X by deriving Y (and by deriving €).
t € FOLLOW(X)
* Not talking about X deriving t, just that t appears
in a derivation after X.
S 5> W X t 7

Formal Definition: FIRST

FIRST (X) -the set of all terminals, potentially including €, that can
begin strings derived from X

FIRST(X) = {t|X »* tY} U {€|X »* €}

Alg. for computing FIRST sets

1. FIRST(t) = {t}

e first set of a terminal includes itself

e for each terminal symbol t

2. € € FIRST(X)

e ifX > ¢

* ifX>Y, ..Y.and € € FIRST(Y;) for 1 <i<k

* //Y,, .. Y areall “nullable” and each can derive the empty string

3. FIRST(Z) S FIRST(X)
e ifX>VY;..Y . Zand € € FIRST(Y,) for1<i<k

* Y, .. Y, can all derive empty string, therefore X >* Z

Example

Compute FIRST sets for the left-factored grammar from before the break:

Grammar:

<o X
l
+
=]

Formal Definition: FOLLOW

* FOLLOW(X) - set of terminals that can immediately follow X
FOLLOW (X) = {t|S -»* WXtZ}

e t € FOLLOW(X) if there is any derivation containing Xt

* tricky: this can also occur if the derivation contains XYZt where
both Y and Z derive €

FOLLOW Intuition #1

Intuition #1:

e if X > YZ, then FIRST(Z) - {€} € FOLLOW(Y)
* (€ never appears in FOLLOW sets)

Grammar: * if two symbols are adjacent somewhere in the grammar,
the "FIRST of the second symbol is in the FOLLOW of the first
X - YZ symbol”
Zz — ab
X - Yab
a € FIRST(2)

a € FOLLOW(Y)

FOLLOW Intuition #2

e Intuition #2:
e if X > YZ, then FOLLOW(X) € FOLLOW(Z)

e anything that occurs at the end of a
production, its FOLLOW set will include the
FOLLOW of the symbol on the LHS.

S Xa - YZa

a € FOLLOW(X)
a € FOLLOW(2)

FOLLOW Intuition #3 S, Xa - YZa

* Intuition #3:

* Generalizing: What is the end of the production?
e Whatif Z »" € ?

e if Z>*¢g, then FOLLOW(X) € FOLLOW(Y)

* Need to recursively check rightmost symbols for potential € reduction

S, Xa - YZa —» Ya

a € FOLLOW(X)
a € FOLLOW(Y)

Alg. for computing FOLLOW sets

Rules from before:
1. S € FOLLOW(S,)
e After we reduce start symbol, expect to see EOF.
2. FIRST(Y) —{e} € FOLLOW(X)
* Not interested in €: FOLLOW sets are sets of terminals.

e For each production: S - aXY
e Optional a terminal(s)
* Y =terminal or nonterminal

3. FOLLOW(S) € FOLLOW(X)
* For each production: S & aXyY, where € € FIRST(Y)

e Y “falls out” of the derivation

4. FOLLOW(S) € FOLLOW(Y)

* IfY does not “fall out”

Example

Compute FOLLOW sets for the left-factored grammar from before the break:

Grammar:

<o X
l
+
=]

... NOW going to construct a parsing table for our left-factored LL(1)
grammar!

Grammar:

E - TX

X -+ E | ¢

T - int Y | (E)
Y - * T | €

Parsing Table Construction Alg.

For each productioninG: X - Y
* For each terminal int € FIRST(Y),add T [X, t] = Y
* If € € FIRST(Y), foreacht € FOLLOW(X),add T [X, t] =Y
* If £ € FIRST(Y) and S € FOLLOW(X),add T [X, $] = Y

Example

Grammar:

KO X
l
+
=]

Another Example

* Demonstrating that left-recursive grammars are not
LL(1)!

* Recall that the language for this grammar is strings
of a b followed by zero or more a’s

Grammar:

S . Salb * Try building a parse table.

Conclusion

* One way to check if grammar is LL(1) is to build parsing table and see
if there are no duplicate entries.

 Classes of grammars that are not LL(1):
* Not left factored
* Left recursive
 Ambiguous
* Plus some others (i.e. those that require more than 1 token of lookahead)

Next Class

Bottom-Up Parsing

