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LAST CLASS
Predictive Parsing 
Algorithm: Recursive Descent

TODAY
• Left Recursion

• Motivation: Recursive Descent 
parsing algorithm does not work 
with grammars that are left 
recursive.



Recursive Descent parsing algorithm does not 
work with grammars that are left recursive.
Unable to use this grammar 
w/ recursive descent:

S → E$
E → E + T | E - T | T
T → T * F | T / F | F
F → id | num | (E)

Why? Infinite loop
boolean E_1() { return E() && advance(PLUS) && T(); } 

boolean E() { ... ; return E_1() || ... }



Definition: A left-recursive grammar has some non-terminal S,
such that S→+Sα, where α is any combination of zero or more terminals 
or non-terminals.
• A production is left recursive if its LHS symbol is also the first symbol 

of its RHS.
• →+ means one or more derivation steps...
• "...eventually derives to”

It is still possible to make derivations with a grammar that is left 
recursive.
• Often easier to understand left-recursive grammars than those 

modified to not be left-recursive.



Example

• What is the language defined by this left-recursive grammar?
• Rewrite left-recursive grammar so that it uses right recursion instead.

Grammar:

S → Sα | β



A general rule to eliminate left recursion

• A left-recursive grammar has the form:
X → Xγ
X → α
• where α does not start with X

• All strings derived from grammar will start with α, and continue with 
zero or more γ.

• Can rewrite using right-recursion as:
X  → α X'
X' → γ X'| ε



Example: expression-term grammar

Left-recursive grammar:

E → E + T
E → T

Right-recursive grammar:



Can work for multiple productions

• Left recursive:
N → N α1 | N α2 … | N αm | β1 | β2 | … | βn

• Transformation, introducing new nonterminal N’
N  → β1 N' | β2 N' | … | βn N'
N' → α1 N' | α2 N' | … | αm N' | ε

• More examples in [Thain]



Example

• Removing left-recursion that spans multiple productions is trickier.

S → A α | γ
A → S β

• left-recursive because: S →+ Sβα
• ... more complicated general algorithms exist



Predictive Parsing

• New Idea: in predictive parsing, parser can predict which production 
to use, simply by looking at the next few tokens:
• No backtracking! (as we had in Recursive Descent in the last class)
• Works only when the next few tokens provide enough information 

about which production to use.
• no more choices to make
• bad/incorrect choices not possible



Predictive Parsing

Predictive parsers accept LL(k) class of grammars:
Will parse the input:
• left-to-right ("first L")
• leftmost derivation ("second L")
• using k "tokens of lookahead"
• k=1: if we can look at next token and always know which production to use



Example

Some issues:
• With 1 symbol of lookahead, we may know that our next token 

is <int>, but not enough information to choose which T production 
rule to apply.
• Sometimes referred to as prediction conflicts caused by common 

prefixes
• Idea: Left factor the grammar when two productions for the same 

nonterminal start with the same symbols.

Grammar:

E → T | T + E
T → int | int * T | (E)



Left Factoring

• "Take the allowable 'endings' and make a new nonterminal to stand 
for them.”
• "Re-write the productions to defer the decision about which 

production to use in predictive parsing until enough of the input has 
been seem that we can make the right choice."



Example

Grammar:

E → T | T + E
T → int | int * T | (E)

Apply left factoring.



Another Example

Grammar:

S → if E then S else S
S → if E then S

Apply left factoring.

Note: Can't simply just increase the lookahead. Rewriting the grammar is necessary.



LL(1) Parsing Tables

• From a left-factored grammar, going to create a parsing table.
• Parser will use this table to create parse tree, by performing one left-

to-right pass on the input, with a leftmost derivation, using 1 symbol 
of lookahead.
• Components:
• left column: current leftmost nonterminal in parse tree
• top row: next input token
• each table cell entry: information about which production to use to expand 

the current nonterminal





Grammar is augmented with the S → E$ production.



Alg. for processing input stream using parsing 
table
• Maintain frontier (fringe) of parse tree as a stack.
• stack will contain non-terminals that have yet to be expanded and terminals 

yet to be matched against the input
• top of stack: leftmost terminal or nonterminal

• Initialize stack to start symbol.
• Iterate until:
• reject on error state
• accept on end of input and empty stack



Example

Input String:

id+id$



• Grammars parsable with LL(1) parsing tables are called LL(1) 
grammars.
• Grammars parsable with LL(2) parsing tables are called LL(2) 

grammars, and so on...
• for LL(k), columns are every sequence of k terminals.
• tables grow very large
• LL(1) only table used in practice



• Duplicate entries in a parsing table⇔ grammar is ambiguous.
• No ambiguous grammar is LL(K) for any k.



After the Break

• How to construct a parsing 
table for a LL(1) grammar.



BEFORE THE BREAK
• finished with example that 

used a LL(1) parsing table to 
perform derivation on input 
token stream

NOW
• How can we construct LL(1) 

parsing table?
• Intuition: during the parsing 

process, we have:
1. the leftmost nonterminal on the 

fringe that we're ready to 
expand

2. the next token



Parsing Table Construction



Motivation: FIRST and FOLLOW Sets

• Example table entry in LL(1) Parsing Table: T[X, t] = Y
• Under what conditions should the parser use the production rule:  X → Y

Scenario #1
• Y can derive t in the first position.

Y →* tZ
• Using this move would be a good idea ... 

eventually the parser could match the t.
t ∈ FIRST(Y)

• The terminal/symbol t is one of the things 
that Y can produce in the very first position.

• There may be others that Y could also produce.

Scenario #2
• Y reduces to ε, t follows Y in a derivation.

Y ↛ ∗ t
t ∉ FIRST(Y)

Y →∗ ε
• This production rule is still useful if parser can get 

rid of X by deriving Y (and by deriving ε).
t ∈ FOLLOW(X)

• Not talking about X deriving t, just that t appears 
in a derivation after X.

S →∗ W X t Z



Formal Definition: FIRST

FIRST(X) - the set of all terminals, potentially including ε, that can 
begin strings derived from X

𝐹𝐼𝑅𝑆𝑇 𝑋 = 𝑡|𝑋 →∗ 𝑡𝑌 ∪ {𝜖|𝑋 →∗ 𝜖}



Alg. for computing FIRST sets

1. FIRST(t) = {t}
• first set of a terminal includes itself
• for each terminal symbol t
2. ε ∈ FIRST(X)
• if X → ε
• if X → Y1, … Yk and ε ∈ FIRST(Yi) for 1 ≤ i ≤ k

• // Y1, … Yk are all “nullable” and each can derive the empty string
3. FIRST(Z) ⊆ FIRST(X)
• if X → Y1 … Yk Z and ε ∈ FIRST(Yi) for 1 ≤ i ≤ k

• Y1 … Yk can all derive empty string, therefore X →∗ Z



Example

Compute FIRST sets for the left-factored grammar from before the break:

Grammar:

E → TX
X → + E | ε
T → int Y | ( E )
Y → * T | ε



Formal Definition: FOLLOW

• FOLLOW(X) - set of terminals that can immediately follow X
𝐹𝑂𝐿𝐿𝑂𝑊 𝑋 = {𝑡|𝑆 →∗ 𝑊𝑋𝑡𝑍}

• t ∈ FOLLOW(X) if there is any derivation containing Xt
• tricky: this can also occur if the derivation contains XYZt where 

both Y and Z derive ε



FOLLOW Intuition #1

Intuition #1:
• if X → YZ, then FIRST(Z) - {ε} ⊆ FOLLOW(Y) 

• (ε never appears in FOLLOW sets)
• if two symbols are adjacent somewhere in the grammar, 

the "FIRST of the second symbol is in the FOLLOW of the first 
symbol"

Grammar:

X → YZ
Z → ab

a ∈ FIRST(Z)
a ∈ FOLLOW(Y)

X → Yab



FOLLOW Intuition #2
• Intuition #2:
• if X → YZ, then FOLLOW(X) ⊆ FOLLOW(Z)
• anything that occurs at the end of a 

production, its FOLLOW set will include the 
FOLLOW of the symbol on the LHS.

S → Xa → YZa

a ∈ FOLLOW(X)
a ∈ FOLLOW(Z)



FOLLOW Intuition #3
• Intuition #3:
• Generalizing: What is the end of the production?
• What if  Z  →* ε ?
• if Z →∗ε, then FOLLOW(X) ⊆ FOLLOW(Y)
• Need to recursively check rightmost symbols for potential ε reduction

S → Xa → YZa

S → Xa → YZa → Ya

a ∈ FOLLOW(X)
a ∈ FOLLOW(Y)



Alg. for computing FOLLOW sets

Rules from before:
1. $ ∈ FOLLOW(S1)
• After we reduce start symbol, expect to see EOF.
2. FIRST(Y) – {ε} ⊆ FOLLOW(X)
• Not interested in ε: FOLLOW sets are sets of terminals.
• For each production: S → aXY

• Optional a terminal(s)
• Y = terminal or nonterminal

3. FOLLOW(S) ⊆ FOLLOW(X)
• For each production: S → aXY, where ε ∈ FIRST(Y)

• Y “falls out” of the derivation
4. FOLLOW(S) ⊆ FOLLOW(Y)

• If Y does not “fall out”



Example

Compute FOLLOW sets for the left-factored grammar from before the break:

Grammar:

E → TX
X → + E | ε
T → int Y | ( E )
Y → * T | ε



… now going to construct a parsing table for our left-factored LL(1) 
grammar!

Grammar:

E → TX
X → + E | ε
T → int Y | ( E )
Y → * T | ε



Parsing Table Construction Alg.

For each production in G: X → Y
• For each terminal in t ∈ FIRST(Y), add T[X, t] = Y
• If ε ∈ FIRST(Y), for each t ∈ FOLLOW(X), add T[X, t] = Y
• If ε ∈ FIRST(Y) and $ ∈ FOLLOW(X), add T[X, $] = Y



Example

Grammar:

E → TX
X → + E | ε
T → int Y | ( E )
Y → * T | ε



Another Example

• Demonstrating that left-recursive grammars are not 
LL(1)!
• Recall that the language for this grammar is strings 

of a b followed by zero or more a’s
• Try building a parse table.

Grammar:

S → Sa|b



Conclusion

• One way to check if grammar is LL(1) is to build parsing table and see 
if there are no duplicate entries.

• Classes of grammars that are not LL(1):
• Not left factored
• Left recursive
• Ambiguous
• Plus some others (i.e. those that require more than 1 token of lookahead)



Next Class
Bottom-Up Parsing


