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Scanner Generators

• Efficient lexical-analyzer generators exist which can translate regular 
expressions → DFAs, and produce tokens for a given input stream.

• Lex Scanner generator:
• Classic scanner generator, for the C Language, developed at AT&T Bell Labs
• produces an entire scanner module coded in C
• saves a great deal of effort when programming a scanner
• many low-level details (reading characters effectively, matching against token 

definitions) are already programmed
• programmer only needs to write the Scanner Specification



Other Scanner Generators

• Other Scanner generators also exist: Lex, Flex (reimplementation of 
Lex that produces faster and more reliable Scanners), JFlex (Java 
Scanner instead of C), JavaCC 
• We’ll use JavaCC this semester

Scanner 
Specification (.jj file) JavaCC

Scanner Module (in 
Java)

.java code is 
generated



Front End of a Compiler – Road Map

• Scanner (Lexical Errors)
• Parser (Syntax Errors)
• Semantic Analyzer (Semantic Errors)



Parsing



Regular languages are “weak”

• Many languages can't be expressed using regular languages or finite 
automata.
• Example: "the set of all balanced parentheses"

(!)! 	 𝑖 ≥ 0
()

(())

((()))



The “balanced” characteristic is found in 
many P/L constructs

• Cannot be expressed by regular languages.
• Can't count arbitrary high w/ a finite set of states.
• But can represent "parity":
• e.g. an even number of 1’s
• Regular languages can represent a "mod k" problem.

• Going to use a different formalism for parsing.

(1 * (250 + 3)) Bash scripting:

if

…

fi



CFGs: Context Free Grammars

• Need a language for describing valid sequences of tokens that 
compose a legal program (in Ram, Java, C++, etc.).
• Most useful programming languages have a recursive structure.
• Will need something more powerful than finite automata to parse 

languages described by grammars.



Example

• Representing some programming language constructs:

Exp → Exp [Exp] 

Exp → Exp op Exp

• Note: Parsing grammar won't detect all errors. There is still a type 
checking phase that will run afterwards.



CFG Components

Defined by the 4-tuple:

G=(T,N,P,S)

• set of terminals: T
• set of nonterminals: N
• start symbol: S
• set of productions:

• X→Y1…YN
• X∈N
• Yi∈N,T,ϵ



Example: strings of balanced parentheses

• Productions:
S → ( S )
S → ϵ

• Set of Terminals: {(,)}
• Set of Nonterminals: {S}
• Start symbol: first production if not explicitly mentioned.

Productions can be read as replacement rules.



Derivations

In a derivation (sequence of productions):
1. begin with a string with only the start symbol, S
2. replace any non-terminal X in the string by the RHS of some 

production: X→Y1…Yn
3. repeat (2) until there are no non-terminals remaining

S→(S)→((S))→(((S)))→"((()))"Example Derivation:

S → ( S )
S → ϵ



• In programming language grammars, the terminals are the tokens of 
the language.
• Once generated, terminals are permanent in the string: there are no 

rules for going backwards, and no other rules for replacing them.
• Derivations can also be drawn as a tree:
• start symbol is the tree's root
• for production X→Y1…Yn, add children Y1…Yn to node X



Example

• Is the string in the language of this grammar?
• Build a derivation and the corresponding parse tree.
• What are the interesting properties of parse trees?

Grammar:

E -> E + E 
   | E * E 
   | ( E ) 
   | id

Input String:

id * id + id



Different derivations of the same string are 
often possible
• Leftmost derivation: the leftmost non-terminal is always the next 

expanded symbol.
• Rightmost derivation: right terminal is the next to be expanded.
• Also possible: neither leftmost or rightmost.



Example: rightmost derivation



• Leftmost and rightmost derivations may produce the same parse tree.

• Single parse tree could have many different derivations.
• We are not only interested in whether s∈L(G), but we also want to 

know the parse tree for s!



Example

Which of these strings are in the language of the CFG?

CFG:

S → a X a
X → b Y
  | ε
Y → c X c
  | ε

A. "aba"
B. "abba"
C. "abcba"
D. "abcbcba"



After the Break
How did I know which production rules to use when I expand a non-terminal?



Before the 
Break

• Left off with the question of "how did I know 
which production rule to use when I expanded a 
non-terminal?”

Grammar: E → E+E | E∗E | (E) | id
Input string: id * id + id

• We produced an identical parse tree using 
a leftmost derivation and a rightmost 
derivation.



Ambiguity

• A grammar is ambiguous if it has more than one parse tree for the 
same string.

Is ambiguity bad?



Example

• Is this an ambiguous grammar?

• S → SS | a | b

• Thought process: try to construct an input string that could yield different parses

• Try “bab”



Example

• Is this an ambiguous grammar?

• S → Sa | Sb | a | b

• Input string: “bab”



Handling ambiguity

• The most direct method is to rewrite the grammar so that it 
is unambiguous.

Ambiguous Grammar:

E → id | num | E * E | E / E | E + E | E - E | (E)

Unambiguous Grammar:

E → E + T | E - T | T
T → T * F | T / F | F
F → id | num | (E)

Big Idea: introducing new non-terminals to enforce 
precedence
• Let E handle the addition and subtraction.

• (the operators that we want to perform last, 
lowest precedence, shallowest in parse tree)

• Let T handle multiplication and division.



Parse Tree Example

Unambiguous Grammar:

E → E + T | E - T | T
T → T * F | T / F | F
F → id | num | (E)

Input String:

id * id + id



Example

• Select the unambiguous grammar that is equivalent to this 
ambiguous grammar.

Ambiguous Grammar:

S → SS | a | b

Unambiguous Grammars:

a) S → Sa | Sb |ϵ 

b) S → SS′ | a | b 
  S′→ a | b

c) S → S | S′ 
  S′→ a | b

d) S → Sa | Sb



Predictive Parsing: Recursive Descent Parsing

Our first parsing algorithm!

Recursive descent:
• top-down parsing algorithm
• (there are also bottom-

up algorithms that we'll explore 
later)

• Parse tree is constructed from 
the top, and left-to-right.

Idea: given a grammar and a 
token stream...
1. Build a parse tree starting 

with the top-level 
nonterminal, and trying the 
production rules in order.

2. Backtrack if necessary.



Example

Grammar:

E → T | T + E
T → int | int * T | (E)

Token Stream:

<LPAREN , "("> ,   <INT , "5"> ,   <RPAREN , ")">



Recursive Descent Parsing Alg:



• Issue: Only works on grammars where the first terminal symbol of 
each production provides enough information about which 
production to choose.
• Does not work on the grammar:

E → E + T | E - T | T
T → T * F | T / F | F
F → id | num | (E)



Could rewrite grammar...

E → E + T | E - T | T
T → T * F | T / F | F
F → id | num | (E)

... E→E+T  becomes  E→T+E

• Topic of Left Recursion will be discussed next class.
• Also need to implement back-tracking.



Backtracking Implementation

Big idea: define boolean functions that return success.

To run:
• initialize next to point to the first token
• invoke E()
• if string is in the grammar, will return true, else will return false

Grammar:

E → T | T + E
T → int | int * T | (E)



boolean advance(int t) { return next++ == t; } 

boolean E_1() { return T(); } 
boolean E_2() { return T() && advance(PLUS) && E(); } 
                     // will have side-effects that bumps our token pointer past T 
                     // requires short circuiting 

boolean E() { savepos = next; return E_1() || (next = savepos, E_2()); } 

boolean T_1() { return advance(INT); } 
boolean T_2() { return advance(INT) && advance(TIMES) && T(); } 
boolean T_3() { return advance(LPAREN) && E() && advance(RPAREN); } 
boolean T() { savepos = next; return T_1() 
                                || (next = savepos, T_2()) 
                                || (next = savepos, T_3()) ; } 
                   // local savepos variable in case of backtracking 
                   // restore pointer in expression sequence in case T_1() 
                   // had any side-effects when we tried it



Next Week • Left Recursion


