CSC 416/565:
DESIGN AND CONSTRUCTION OF COMPILERS

West Chester University
Dr. Richard Burns
Fall 2023

Scanner Generators

* Efficient lexical-analyzer generators exist which can translate regular
expressions - DFAs, and produce tokens for a given input stream.

* Lex Scanner generator:
 Classic scanner generator, for the C Language, developed at AT&T Bell Labs
e produces an entire scanner module coded in C
* saves a great deal of effort when programming a scanner

* many low-level details (reading characters effectively, matching against token
definitions) are already programmed

* programmer only needs to write the Scanner Specification

Other Scanner Generators

e Other Scanner generators also exist: Lex, Flex (reimplementation of
Lex that produces faster and more reliable Scanners), JFlex (Java
Scanner instead of C), JavaCC

e We'll use JavaCC this semester

Scanner Module (in
Java)

Scanner JavacC

Specification (.jj file)

.java code is
generated

Front End of a Compiler — Road Map

e Scanner (Lexical Errors)
 Parser (Syntax Errors)
* Semantic Analyzer (Semantic Errors)

Parsing

— l Y7) Mé«é, Mﬂw : ,'PNMSC Iﬁ@iq
A Leter Gl

Syt S I . S L
P;\La &iw/ Sunnw\mz LPW)V J s Fwse/ ﬁk;\b

Ogh‘l

Des GC

== 1 -

’P@/Se, ‘rcé_,

Regular languages are “weak”

* Many languages can't be expressed using regular languages or finite
automata.

* Example: "the set of all balanced parentheses”
)Yi=0

The “balanced” characteristic is found in

many P/L constructs

(1 =

(250 + 3))

Bash scripting:

* Cannot be expressed by regular languages.
* Can't count arbitrary high w/ a finite set of states.

e But can represent "parity":
* e.g. an even number of 1’s

e Regular languages can represent a "mod k" problem.
* Going to use a different formalism for parsing.

CFGs: Context Free Grammars

* Need a language for describing valid sequences of tokens that
compose a legal program (in Ram, Java, C++, etc.).

* Most useful programming languages have a recursive structure.

* Will need something more powerful than finite automata to parse
languages described by grammars.

Example
* Representing some programming language constructs:

Exp - Exp [Exp]
Exp - Exp op Exp

* Note: Parsing grammar won't detect all errors. There is still a type
checking phase that will run afterwards.

CFG Components

Defined by the 4-tuple:

G=(T,N,P,S)

set of terminals: T

e set of nonterminals: N
start symbol: S

e set of productions:
o« XYY,
* XEN
* YEN,Te

Example: strings of balanced parentheses

 Productions:

S - (S) Productions can be read as replacement rules.

S > €

e Set of Terminals: { (,) }

e Set of Nonterminals: {S}

e Start symbol: first production if not explicitly mentioned.

L 5 -
Derivations S - €

S

)

Example Derivation: S—(S)—-((S))—=(((S)))="((C()))"

In a derivation (sequence of productions):
1. begin with a string with only the start symbol, S

2. replace any non-terminal X in the string by the RHS of some
production: X-Y,..Y_

3. repeat (2) until there are no non-terminals remaining

* In programming language grammars, the terminals are the tokens of
the language.

* Once generated, terminals are permanent in the string: there are no
rules for going backwards, and no other rules for replacing them.

* Derivations can also be drawn as a tree:

e start symbol is the tree's root
 for production X-Y,...Y,, add children Y;...Y, to node X

Example

Grammar: Input String:

E -> E + E id * 1d + id
| E * E
| (E)
| id

* Is the string in the language of this grammar?
* Build a derivation and the corresponding parse tree.
* What are the interesting properties of parse trees?

Different derivations of the same string are
often possible

* Leftmost derivation: the leftmost non-terminal is always the next
expanded symbol.

* Rightmost derivation: right terminal is the next to be expanded.

* Also possible: neither leftmost or rightmost.

Example: rightmost derivation

e Leftmost and rightmost derivations may produce the same parse tree.

* Single parse tree could have many different derivations.

* We are not only interested in whether s€L(G), but we also want to
know the parse tree for s!

Example

Which of these strings are in the language of the CFG?

CFG:
A. "aba"
S - a X a B. "abba"
X - b Y C. "abcba"
| € D. "abcbcba"
Y - ¢ X C
| €

After the Break

How did | know which production rules to use when | expand a non-terminal?

Before the
Break

 Left off with the question of "how did | know
which production rule to use when | expanded a
non-terminal?”

Grammar:E - E+E | ExE | (E) | 1id
Input string: id * id + id

* We produced an identical parse tree using
a leftmost derivation and a rightmost
derivation.

Ambiguity

* A grammar is ambiguous if it has more than one parse tree for the
same string.

I €

[B g

L] C % <

| [4123

i id T+ T
.
(d \d

Is ambiguity bad?

Example

Is this an ambiguous grammar?

S - SS | a | b

Thought process: try to construct an input string that could yield different parses

Try “bab”

Example

* |s this an ambiguous grammar?
eS>Sa|Sb|al|b

* Input string: “bab”

Handling ambiguity

* The most direct method is to rewrite the grammar so that it
IS unambiguous.

Ambiguous Grammar:

E - id | num | E*E | E/E | E+E | E - E | (E)

Unambiguous Grammar: Big Idea: introducing new non-terminals to enforce
precedence

E-E+ T | E-T | T * Let E handle the addition and subtraction.

T ->T*F | T/ F | F * (the operators that we want to perform last,

F - id | num | (E) lowest precedence, shallowest in parse tree)

* Let T handle multiplication and division.

Parse Tree Example

Unambiguous Grammar:

E-E+T]| E-T|T
T-T*F | T/ F|F
E)

F - id | num | (

Input String:

id * id + id

Example

e Select the unambiguous grammar that is equivalent to this
ambiguous grammar.

Ambiguous Grammar: Unambiguous Grammars:
S 5SS | alb a)s - Sa | Sb |e
b)

c)JS - S | g’
S'-a | b

d)

Predictive Parsing: Recursive Descent Parsing

Our first parsing algorithm! Idea: given a grammar and a
token stream...

Recursive descent: 1. Build a parse tree starting
with the top-level
nonterminal, and trying the
production rules in order.

* top-down parsing algorithm

e (there are also bottom-
up algorithms that we'll explore
later) 2. Backtrack if necessary.

* Parse tree is constructed from
the top, and left-to-right.

Example

Grammar:

E-T | T + E
T - int | int * T | (E)

Token Stream:

<LPAREN , " ("> , <INT

"5">

14

<RPAREN

4

") ">

S — if E then S else §
S — begin S L
S — print E

L — end
L—;SL

E — num = num

GRAMMAR 3.11.

final int IF=1, THEN=2, ELSE=3, BEGIN=4, END=5, PRINT=6,

SEMI=7, NUM=8, EQ=9;
int tok = getToken() ;

void advance() {tok=getToken() ;}
void eat(int t) {if (tok==t) advance(); else error();}

void S() {switch(tok) {

case IF: eat (IF); E(); eat (THEN); S();
eat (ELSE) ; S(); break;

case BEGIN: eat (BEGIN); S(); L(); break;
case PRINT: eat (PRINT); E(); break;
default: error () ;
}}

void L() {switch(tok) {
case END: eat (END) ; break;
case SEMI: eat(SEMI); S(); L(); break;
default: error () ;

H

void E() { eat(NUM); eat (EQ); eat(NUM); }

Recursive Descent Parsing Alg:

* [ssue: Only works on grammars where the first terminal symbol of
each production provides enough information about which
production to choose.

* Does not work on the grammar:
E - FE + T | E
T - T * F | T

Could rewrite grammar...

T
| F ... EE+T becomes E-T+E

* Topic of Left Recursion will be discussed next class.
* Also need to implement back-tracking.

Backtracking Implementation

Grammar:

E - T | T + E
T - int | int * T | (E)

Big idea: define boolean functions that return success.

To run:
* initialize next to point to the first token

* invoke E ()
e if string is in the grammar, will return , else will return

boolean

boolean
boolean

boolean

boolean
boolean
boolean
boolean

advance (int t) { return next++ == t; }

E

T

T
T

T

()
1
2
3

()

(

(
(

{

)
)
)
{

{ return T(); }

{ return T() && advance (PLUS) && E(); }
// will have side-effects that bumps our token pointer past T
// requires short circuiting

savepos = next; return E 1() || (next = savepos, E 2()); }

{ return advance (INT); }
{ return advance (INT) && advance (TIMES) && T(),; }
{ return advance (LPAREN) && E() && advance (RPAREN); }
savepos = next; return T 1()
|| (next = savepos, T 2())
|| (next = savepos, T 3()) ; }
// local savepos variable in case of backtracking
// restore pointer in expression sequence in case T 1()
// had any side-effects when we tried it

N eXt We e k e Left Recursion

