CSC 416/565:

West Chester University

DESIGN AND CONSTRUCTION | or. Richard Burns
OF COMPILERS | F2023

LAST WEEK TODAY

* Regular Expressions * Towards an implementation

* Lexical specification using * Finite Automata

regular expressions * Implementation of a DFA

* Regular Expression - DFA

Finite Automata

Recall, a finite automaton consists of:

1.

A

input alphabet: 2

set of states: S

a start state: n

set of final accepting states: F € §

set of transitions/edges: state —»"PUt state

The Idea

* transition s;—>3s,, in state s;, on input a, go to state s,
 at the end of the input: if in an accepting state s€F, then ACCEPT
 at the end of the input: if not in an accepting state, s&F, then REJECT

* if we "get stuck” somewhere and cannot transition based on the next
input, then REJECT

Drawing Out

2=0,1

Example: A finite automaton that accepts only "0”

Language of a finite automaton is the set of accepted strings.

Drawing Out

2=0,1

Example: A finite automaton that accepts any number of 0's followed
by a single 1.

2=0,1
Example: Given this finite automaton ...

Which of the below languages is
equivalent to the language denoted by
the FA?

Example

(0]1)*

(0]1)*00

(1*]0)(1]0)
1*](01)*|(001)* | (000*1)*

o0 wp

DFA: Deterministic Finite
Automaton

DFA Rules

Rules

* No two edges leaving from the
same state can have the same
input.

* NOo € moves.
* (¢ moves allowed in an NFA.)

Properties

* Takes only one path through the
state graph per given input.

* Fast to execute.

* No choices to consider about
which edge to follow from the
current state.

e Just follow the input.

Stepping back...the big goal

1. Given a lexical specification...

2. ..with regular expressions that represent the language for each
token class...

3. ...create a deterministic finite automaton (DFA).
How? We'll see shortly.

Given Lexical Specification: Individual finite automaton for each lexical token:

if IF
[a-z] [a-20-9] * ID oz @
[0-9]+ NUM TN
([0-9]+"."[0-9]1%)| ([0-9]*"."[0-9]+) REAL @

-9
i NN
("--"[a-z]*"\n") [(" "["\n"["\t")+ no token, just white space \@/i‘@/f_\‘ >§9 @ Q

error
IF ID NUM

FIGURE 2.2. Regular expressions for some tokens.

Rl @_,@_,@ ©®

@/"\A@/—\A. blank, etc. ‘ @ ~
LR Ol Oy @

REAL white space error

FIGURE 2.3. Finite automata for lexical tokens. The states are indicated by
circles; final states are indicated by double circles. The start
state has an arrow coming in from nowhere. An edge labeled
with several characters is shorthand for many parallel edges.

Each FA language is equivalent to the language of the regex.

We can cleverly combine the separate FAs into a single FA.

\Y:yj:iwijggg>

i £ —~ 2 02
"o 0O ORENOE
IF ID NUM

0-9 0-9 \@T’@—_’C@W

s () . (]
j®m@/—‘ blank, etc. ~
blank, etc.
@ @ any but \n
REAL white space error

N
Or=e O =l

FIGURE 2.3. Finite automata for lexical tokens. The states are indicated by
circles; final states are indicated by double circles. The start
state has an arrow coming in from nowhere. An edge labeled
with several characters is shorthand for many parallel edges.

a-e, g-z, 0-9

IDmID
-9, a-z
S 92 aE o 0-9

k}\\\ 0-9 0-9

—

1 (D——
NUM REAL

blank, -

etc.

other

—>
@ error Q white space

white space
P error a-z

FIGURE 2.4. Combined finite automaton.

Implementation of DFAS

Implementing Finite Automata: Table-Driven

Approach

Encode as a two dimensional transition table

* Rows: states - representing the current state
e Columns: input - representing the next input symbol

* For every transition: s; =% sy,

int edges[][] = { /* ---0 1 2------.e £ gh i
/* state 0 */ {0,0,-..0,0,0---0---0,0,0,0,0
/* state 1 */ {0,0,---7,7,7--+9---4,4,4,4,2
/* state 2 */ {0,0,---4,4,4.--.0---4,3,4,4,4
/* state 3 */ {0,0,---4,4,4.--.0---4,4,4,4,4
/* state 4 */ {0,0,--44,4,4--.0--44,4,4,4,4,4
/* state 5 */ {0,0,---6,6,6---0---0,0,0,0,0
/* state 6 */ {o0,0,.--6,6,6---0---0,0,0,0,0
/* state 7 */ {o0,0,.--7,7,7---0---0,0,0,0,0
/* state 8 */ {o0,0,.--8,8,8--.0---0,0,0,0,0
et cetera

}

.
St gt St g gt N gt Cmaged Saged
- - - - - - - - -

- */

a-e, g-z, 0-9

m error = REAL
O—@>

O
N gy

REAL

\n
—>0
rrrrr whi te space

white space error

FIGURE 2.4. Combined finite automaton.

Pseudocode for Table-Driven Implementation
of DFA

int 1 = 0; // at position 0 in input string
int state = 1; // set state to the start state

while (input[i]) { // while there is more input
// transition on the input,

// ... set new state,
// ... bump the input pointer position

state = edges[state, 1nputlit+]];

One approach: use a finality array if we successfully consumed all input.

String[] finalityAry = {"", "', "ID", "IF",

A More Compact Implementation

Convert any rows that have identical values to pointers that point to a single
representation of the "common-data" row.

@/wwsm sﬂto 3 ael ‘f)

-

B T gas e/{—&

) L :
e g 5| ololo|. |olo|e]o]e]d]
= z'
3 » — A —
g _‘::ELMML; NEAEINREEE
gl . |
C. :___\,.3 Cle | G “.[Olo[olc»[o[o7
D S !
5 | -—+— R

[

How to recognize all tokens in a source
p ro g ra m Last Current Current Accept

Final State Input Action
. . (. . 0 1 Jif --not-a-com
e Recall the lexical specification rules. 2 2 HE --not-a-com
. 3 3 lif[--not-a-com
 Want to always fine the longest match 3 0 ifT --not-a-com return IF
0 1 if[--not-a-com

lnput Stl’ing.' 1f ——not—-a-comment 12 12 if| [--not-a-com

. . . 12 0 if] --not-a-com found white space; resume

What is the tokenization? 0 1 if L-not-a-com
9 9 if |-|-not-a-com
a-e, g-z, 0-9 9 10 if |--pot-a-com
error REAL 9 10 if thpt—a—com
@ 9 10 if |F-nogt-a-com
9 10 if |F-notra-com

e g 9 0 if |-Fnot-p-com error illegal token ‘-’; resume
0 1 if -|-not-a-com
’@ 9 9 if -|-hot-a-com

NUM REAL
blank, - 9 0 if -|-hot-a-com error illegal token ‘-’; resume

other
= \n FIGURE 2.5. The automaton of Figure 2.4 recognizes several tokens. The
—> (10—
@ symbol | indicates the input position at each successive call
to the lexical analyzer, the symbol L indicates the current

position of the automaton, and T indicates the most recent
position in which the recognizer was in a final state.

white space error

FIGURE 2.4. Combined finite automaton.

int currPos = beginTokPos = endTokPos = 0;
int currState, lastFinalState;

while (input[endTokPos]) { // while more input
currentState = START STATE; // start state = 1
beginTokPos = currPos = endTokPos;
while (currentState != 0) {
currState = edges|[currState, input|[currPos++]];
if (finalityAry|[currState] != null) { // currState is a final state
lastFinalState = currState; // remember this state

// and position where token ends,
// for output later

endTokPos = currPos - 1;

}
// at this point, either have the longest match,

// or a single char that we got stuck on

if (lsatFinalState > 0) // longest match

append (< finalityAry[lastFinalState], 1input.substring(beginTokPos, endTokPos + 1) >);
else { // single char

endTokPos = currPos;

append (< "ERROR", input.substring(beginTokPos, endTokPos + 1) >);

}

return appended list

Another Implementation
Approach:
Explicit Control

Transition Table

/* Assume CurrentChar contains the first character to be scanned %/
State « StartState
while true do

NextState « T[State, CurrentChar]

if NextState = error

then break

State < NextState

CurrentChar < READ()
if State € AcceptingStates
then /% Return or process the valid token x/
else /x Signal a lexical error x/

Figure 3.3: Scanner driver interpreting a transition table.

(a) f
Not(Eol)
State Character
/|EBol]lal]b
112
(b) 2|3
3|3]| 4 3|13 3
4

Figure 3.2: DFA for recognizing a single-line comment. (a) transition
diagram; (b) corresponding transition table.

Explicit Control

/* Assume CurrentChar contains the first character to be scanned x/
if CurrentChar ="/
then
CurrentChar < READ()
if CurrentChar ="/
then
repeat
CurrentChar < READ()
until CurrentChar € { Eol, Eof}
else /% Signal a lexical error x/
else /% Signal a lexical error x/
if CurrentChar = Eol
then /% Finished recognizing a comment %/
else /% Signal a lexical error x/

Figure 3.4: Explicit control scanner.

Table-Driven Approach

* Size of code is reduced. * May have very large tables,
» Same code works for many causing significant increase in
different problems. the space used by the program.

* Thus, often rely on advanced
table compression
representations, such as sparse
array representations.

e But there is a time penalty for
compression.

* Maintainability (code is easier to
change).

NFA: Nondeterministic Finite Automata

Extends DFA's w/ potential choice of which edge to follow out of a
state.

1. multiple edges have the same symbol

2. € edges exist

Qo) V

i L At XJ - Rt - "
@ o (O B oL
\v_’/ Co

02 — : — . r i > 11 .
* In start state, on input character a, the automaton can move
either right or left.

* If the right direction is chosen, even length strings of a will be
accepted.

* What will be accepted if the /eft is chosen?

* In this example on the first transition, the machine first must "guess”
which way to go.
* ... thus, at first, NFAs may seem very practical.

Two equivalent NFAs

From previous slide

Qo)
@Q'—f——\ Q(-\/)O T @/’\>OC/©
v_/ o

O

11 .
w/ epsilon edges
. y
& EX _ ” ‘ 4 i, .5/&- £ -
B O~y 7 A 0
o] | 3 PR > - - R—C——’/
Oh— A.

* Edges labeled with € may be taken without using up a symbol from the input.
* Thus, more guessing is required.
* If any guess works, then some string is in the language of the machine.

Road Map

Convert regular expressions that define token classes into NFAs.

Then convert NFAs into DFAs.
We already discussed implementation of DFAs (previous slides).

Motivation: easier to convert regex's into NFAs than DFAs.

h w N R

Converting a Regex into a NFA

“Thompson’s Construction” (McNaughton-Yamada-Thompson Alg.)

Turns each regex into an NFA with:
1. atail (start edge)
2. a head (ending state)

Will define a construction for each of the defined regular expressions
(five of them).

The two atomic regular expressions are easy: (a and €)

start a start i _

Generalizing, any regex M will have some NFA w/ a tail and a head.
It is sometimes drawn like this, with a tail and a head:

The three compounding operations AR, A | B, and A* can also be represented.

Concatenation:

Alternation:

Kleene Closure:

Either the string will be in the language of N (s) or language
of N(t).
e-transitions are used to capture this.

Guarantees that "" (empty string) is in the language.
Otherwise, make e-transition to the start state of N (s).

From final state of N (s), if we reach it, we can go back to the
start state of N (s) (to handle the iteration).

Can also transition from final state of N (s) to the final state
of the machine.

Given the reqular expression: (0|1)*0

Example

Build an equivalent NFA machine that recognizes
the same language.

Converting a NFA into a DFA

* Already looked at implementing DFAs.
* Implementing NFAs seem non-trivial because of the "guessing".
* |dea: Algorithmic approach to convert NFAs into DFAs.

Closure Function

e-closure(X): set of all states that can be recursively reached by
following any number of e-transitions from the state X.

Example

e-closure(X): set of all states that can be recursively reached by
following any number of e-transitions from the state X.

e-closure (B) = {B, C, D} g-closure (G) = 27?27

An NFA can be in many states at any time.

e Seems potentially very bad.
* How many different states is the worse-case scenario?

BIG IDEA: Simulate the NFA by keeping track of
the set of all states that the machine may be in.

* |[dea: Each unique set becomes a state in the DFA.

Subset Construction Alg.

* /[dea: D will be in state {x,y,z} after reading a given input string, if and
only if, N could be in any of the states x, y, or z, depending on the
transitions it chooses.

* D keeps track of all of the possible routes N might take and runs them
simultaneously.

Need to define five things for each NFA:

states: S
start state: s € S
final states: F € S

edge transition function: edge(s,c) = {t | s >°t}
 set of all states reachable by following a single edge with label c from state s

B W

5. e-closure function

Need to define for DFA:

states: all possible combinations of S except the empty set
start state: e-closure(s)

final states: {X | XN Fz 0}

edge transition function: Y = e-closure (edge(X,c))

B W

New machine is deterministic because we have finite states, start
states, set of final states, transition fn (deterministic) and no more &-
transitions.

B i o

\, & B & UC Y2 x :
NFA — DFA Example e O @\\3 B2

. ‘/:7-

Idea: rather than enumerating all possible states, just going to enumerate
the subsets that we actually need.

1. Begin w/ start state of NFA. Which additional states may the NFA initially
be in without consuming any input?

2. What happens on each of the possible input values?

w

Compute € closures along the way.

4. If any DFA set includes a final state from the NFA, that DFA state should
be marked as final.

5. Keep repeating on possible input values as long as new subsets of NFA
states are being computed.

6. Algorithm does not visit unreachable states of the DFA.

Finish Lexer/Scanner!

Discussion of scanning
tools used in practice.

HW #1 is OUT.

Next Week

