
CSC 416/565:
DESIGN AND CONSTRUCTION

OF COMPILERS

West Chester University
Dr. Richard Burns
Fall 2023

LAST WEEK
• Regular Expressions
• Lexical specification using

regular expressions

TODAY
• Towards an implementation
• Finite Automata
• Implementation of a DFA
• Regular Expression → DFA

Finite Automata

Recall, a finite automaton consists of:
1. input alphabet: Σ
2. set of states: S
3. a start state: n
4. set of final accepting states: 𝐹 ⊆ 𝑆
5. set of transitions/edges: 𝑠𝑡𝑎𝑡𝑒 →!"#$% 𝑠𝑡𝑎𝑡𝑒

The Idea

• transition s1→as2, in state s1, on input a, go to state s2
• at the end of the input: if in an accepting state s∈F, then ACCEPT
• at the end of the input: if not in an accepting state, s∉F, then REJECT
• if we "get stuck" somewhere and cannot transition based on the next

input, then REJECT

Drawing Out

Σ=0,1

Example: A finite automaton that accepts only "0”

Language of a finite automaton is the set of accepted strings.

Drawing Out

Σ=0,1

Example: A finite automaton that accepts any number of 0's followed
by a single 1.

Example

Σ=0,1

Example: Given this finite automaton …

Which of the below languages is
equivalent to the language denoted by
the FA?

A. (0|1)*
B. (0|1)*00
C. (1*|0)(1|0)
D. 1*|(01)*|(001)*|(000*1)*

DFA: Deterministic Finite
Automaton

DFA Rules

Rules
• No two edges leaving from the

same state can have the same
input.
• No ε moves.
• (ε moves allowed in an NFA.)

Properties
• Takes only one path through the

state graph per given input.
• Fast to execute.
• No choices to consider about

which edge to follow from the
current state.
• Just follow the input.

Stepping back…the big goal

1. Given a lexical specification...
2. …with regular expressions that represent the language for each

token class...
3. ...create a deterministic finite automaton (DFA).
How? We'll see shortly.

Given Lexical Specification: Individual finite automaton for each lexical token:

Each FA language is equivalent to the language of the regex.

We can cleverly combine the separate FAs into a single FA.

Implementation of DFAs

Implementing Finite Automata: Table-Driven
Approach
Encode as a two dimensional transition table
• Rows: states - representing the current state
• Columns: input - representing the next input symbol
• For every transition: 𝑠! →" 𝑠#

Pseudocode for Table-Driven Implementation
of DFA

int i = 0; // at position 0 in input string
int state = 1; // set state to the start state

while (input[i]) { // while there is more input
 // transition on the input,
 // ... set new state,
 // ... bump the input pointer position
 state = edges[state, input[i++]];
}

One approach: use a finality array if we successfully consumed all input.

String[] finalityAry = {"", "", "ID", "IF", ... };

A More Compact Implementation
Convert any rows that have iden0cal values to pointers that point to a single
representa0on of the "common-data" row.

How to recognize all tokens in a source
program
• Recall the lexical specification rules.

• Want to always fine the longest match

Input string: if --not-a-comment
What is the tokenization?

int currPos = beginTokPos = endTokPos = 0;
int currState, lastFinalState;

while (input[endTokPos]) { // while more input
 currentState = START_STATE; // start state = 1
 beginTokPos = currPos = endTokPos;
 while (currentState != 0) {
 currState = edges[currState, input[currPos++]];
 if (finalityAry[currState] != null) { // currState is a final state
 lastFinalState = currState; // remember this state
 // and position where token ends,
 // for output later
 endTokPos = currPos - 1;
 }
 }
 // at this point, either have the longest match,
 // or a single char that we got stuck on
 if (lsatFinalState > 0) // longest match
 append(< finalityAry[lastFinalState], input.substring(beginTokPos, endTokPos + 1) >);
 else { // single char
 endTokPos = currPos;
 append(< "ERROR", input.substring(beginTokPos, endTokPos + 1) >);
 }
}
return appended list

Another Implementa.on
Approach:
Explicit Control

Transition Table
Explicit Control

Table-Driven Approach

ADVANTAGES
• Size of code is reduced.
• Same code works for many

different problems.
• Maintainability (code is easier to

change).

DISADVANTAGES
• May have very large tables,

causing significant increase in
the space used by the program.
• Thus, often rely on advanced

table compression
representations, such as sparse
array representations.
• But there is a time penalty for

compression.

NFA: NondeterminisHc Finite Automata

Extends DFA's w/ potential choice of which edge to follow out of a
state.
1. multiple edges have the same symbol
2. ε edges exist

• In start state, on input character a, the automaton can move
either right or left.
• If the right direction is chosen, even length strings of a will be

accepted.
• What will be accepted if the left is chosen?

• In this example on the first transition, the machine first must "guess"
which way to go.
• ... thus, at first, NFAs may seem very practical.

Two equivalent NFAs

• Edges labeled with ε may be taken without using up a symbol from the input.
• Thus, more guessing is required.
• If any guess works, then some string is in the language of the machine.

From previous slide

w/ epsilon edges

Road Map

1. Convert regular expressions that define token classes into NFAs.
2. Then convert NFAs into DFAs.
3. We already discussed implementabon of DFAs (previous slides).
4. Mo6va6on: easier to convert regex's into NFAs than DFAs.

Converting a Regex into a NFA

“Thompson’s Construction” (McNaughton-Yamada-Thompson Alg.)

Turns each regex into an NFA with:
1. a tail (start edge)
2. a head (ending state)

Will define a construction for each of the defined regular expressions
(five of them).

The two atomic regular expressions are easy: (a and ε)

Generalizing, any regex M will have some NFA w/ a tail and a head.
It is someYmes drawn like this, with a tail and a head:

The three compounding operations AB, A|B, and A* can also be represented.

Concatenation:

Alternation:

Kleene Closure:

• Either the string will be in the language of N(s) or language
of N(t).

• ε-transitions are used to capture this.

• Guarantees that "" (empty string) is in the language.
• Otherwise, make ε-transition to the start state of N(s).
• From final state of N(s), if we reach it, we can go back to the

start state of N(s) (to handle the iteration).
• Can also transition from final state of N(s) to the final state

of the machine.

Example
Given the regular expression: (0|1)*0

Build an equivalent NFA machine that recognizes
the same language.

Converting a NFA into a DFA

• Already looked at implementing DFAs.
• Implementing NFAs seem non-trivial because of the "guessing".
• Idea: Algorithmic approach to convert NFAs into DFAs.

Closure Function

ε-closure(X): set of all states that can be recursively reached by
following any number of ε-transibons from the state X.

Example

ε-closure(X): set of all states that can be recursively reached by
following any number of ε-transitions from the state X.

ε-closure(B) = {B, C, D} ε-closure(G) = ???

An NFA can be in many states at any time.

• Seems potentially very bad.
• How many different states is the worse-case scenario?

BIG IDEA: Simulate the NFA by keeping track of
the set of all states that the machine may be in.

• Idea: Each unique set becomes a state in the DFA.

Subset Construction Alg.

• Idea: D will be in state {x,y,z} after reading a given input string, if and
only if, N could be in any of the states x, y, or z, depending on the
transitions it chooses.
• D keeps track of all of the possible routes N might take and runs them

simultaneously.

Need to define five things for each NFA:

1. states: S
2. start state: s ∈ S
3. final states: F ∈ S
4. edge transibon funcbon: edge(s,c) = {t | s →c t}
• set of all states reachable by following a single edge with label c from state s

5. ε-closure funcbon

Need to define for DFA:

1. states: all possible combinations of S except the empty set
2. start state: ε-closure(s)
3. final states: {X | X ∩ F ≠ ∅ }
4. edge transition function: Y = ε-closure (edge(X,c))

New machine is deterministic because we have finite states, start
states, set of final states, transition fn (deterministic) and no more ε-
transitions.

NFA → DFA Example

Idea: rather than enumeraCng all possible states, just going to enumerate
the subsets that we actually need.
1. Begin w/ start state of NFA. Which addiConal states may the NFA iniCally

be in without consuming any input?
2. What happens on each of the possible input values?
3. Compute ε closures along the way.
4. If any DFA set includes a final state from the NFA, that DFA state should

be marked as final.
5. Keep repeaCng on possible input values as long as new subsets of NFA

states are being computed.
6. Algorithm does not visit unreachable states of the DFA.

Next Week

Finish Lexer/Scanner!

Discussion of scanning
tools used in practice.

HW #1 is OUT.

