
CSC 416/565:
DESIGN AND CONSTRUCTION

OF COMPILERS
West Chester University

Dr. Richard Burns
Spring 2023

LAST WEEK
Overview of a Compiler:
• Front End
• Back End

TODAY
• Role of the Lexer (also

called Scanner)
• Topics: Lexical Analysis, Lexical

Tokens
• Regular Expressions
• Lexical specification using

regular expressions

“To translate a program from one language into another, a compiler
must pull it apart and understand its structure and meaning, then put it

back together in a different way.”

Front End

Lexical Analysis:
break input
into tokens

Syntactic Analysis:
parse phrase

structure of source
code

Semantic
Analysis: check

program's
meaning?

Lexical Analysis

Lexical Analyzer (LA)

Input: stream of characters
Output: stream of "tokens" (recognize in the source code all
names/identifies, keywords, punctuation marks)
• Usually will discard any white space and comments between the

tokens.

• LA is not very complicated
• Formalisms and tools useful in lexing phase can also be used

in parsing phase.

Lexical Analyzer (LA)

Goal: Divide up code into tokens

1. Place “dividers” between different tokens
2. Recognize the token type or class of each token

if (i == j)
 z = 0;
else
 z = 1;

\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

Token Classes

Each token class correspond to a set of strings.
Examples:
• ID

class description: strings of letters or digits starting with a letter
examples: foo n14
• NUM non-empty string of digits
73 0 00 082

Other classes are by themselves, (singletons):
• IF if
• LPAREN (
Also defining the token class:
• WHITESPACE a non-empty sequence of blanks, newlines, and tabs

Dataflow
• Will classify program substrings according to their token type/class.
• Communicate tokens to parser.

string
foo = 42;

LA P

General Form of Token: <class, string>
• String part is often called a lexeme.
• Examples of tokens with their lexemes:
<Id, "foo"> <Op, "="> <Int, "42">

How to Implement Lexical Analysis?

• Goal: partition the source program (a very long string) into its token
substrings
• Idea: recognize one token at a time
• Implementation: read string left-to-right
• How: eventually will use a finite automaton

Example

Defined Token Classes:

Operators
Whitespace
Keywords
Identifiers
Numbers
… and some singleton classes: () ; =

\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

Example

Lookahead may be required to decide where one token ends and the next
token begins.

Q: Where is lookahead necessary?

Ideally lookahead is not too costly from a computational perspective.
• But still would like to minimize the amount of lookahead required.
• Depending on the language specification (what language you are compiling

for), minimizing lookahead may be easier or more difficult.

\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

FORTRAN Example

• do loop is a strange looking instruction!
• Meaning: iterate using the counting variable until the label 5 is reached.
• Loops 25 times, from 1 to 25, stepping by 1.
• BUT, whitespace is insignificant in FORTRAN (like Java). Could revise program

by eliminating whitespace and it would be exactly the same.
• do5i=1,25 This instruction is also perfectly valid.
do 5 i = 1,25 vs. do 5 i = 1.25
• Very different meanings! What's the problem?
Loop Assignment statement w/ variable and float “do5i = 1.25”

sum = 0
 do 5 i = 1,25
 sum = sum + i
 write(*,*) 'i = ', i
 write(*,*) 'sum = ', sum
 5 continue // loop back

Regular Languages

• used to specify the lexical structure of programming languages
• lexical structure: set of token classes/types
• each token class contains some set of strings
• will use regular languages to specify which set of strings belongs to a

token class

Formalisms

• A formal language has an alphabet Σ (sigma): a set of characters.
• Language is a set of strings drawn from that alphabet.
• To define regular languages, we generally use regular expressions.
• each regular expression denotes a set

Regular Expressions are built recursively out
of smaller regular expressions
Two “base case” building rules:

1. Singular Character

Example: 'd' = {"d"}
The regular expression that is the single character d denotes
the language containing one string, which is the single character d.
Recall: A language is a set of strings. (A string is a finite sequence of symbols;
the symbols are from a finite alphabet.)

Regular Expressions are built recursively out
of smaller regular expressions
Two “base case” building rules:

2. Epsilon

Example: ε = {""}

Represents the language that contains a single string, the empty string.

Side note: This is not the empty language, which is the empty set of strings.
ε ≠ ∅

Regular Expressions are built recursively out
of smaller regular expressions
Three “induction” building rules:

3. Union / Alternation

Example: A|B = {a|a ∈ A} ∪ {b|b ∈ B}
• "regex A pipe regex B”

Corresponds to the union of the languages in A and B.
• The set of strings, each string a that is in the language of A, union with each

string b that is in the language of B.

Regular Expressions are built recursively out
of smaller regular expressions
Three “induction” building rules:

4. Concatenation

Just like string concatenation.
Example: A·B = { ab | a ∈ A ^ b ∈ B }
Given two languages (or regular expressions denoting the
languages), A and B, the concatenation is equal to all the strings where a is
drawn from A and b is drawn from B.
• Cross-product operation: choose string from A, and choose string from B, in

all possible ways.

Regular Expressions are built recursively out
of smaller regular expressions
Three “induction” building rules:

5. Repetition / Iteration

Example:𝑀∗ = ⋃"#$𝐴"
(Pronounced "M star".) Also known as the Kleene closure.

Equal to the union of 𝑖 ≥ 0, of 𝐴" (to the ith power).

• 𝐴" → 𝐴 concatenated with itself 𝑖 times. 𝐴…𝐴𝑖	times

• Possible that 𝑖 = 0, 𝐴$ = 𝜀: language of the empty string.
• Empty strings are always an element of the Kleene closure.

• These 5 cases define the construction of regular expressions over
some given alphabet Σ.

Examples

Σ={0,1}

• 1∗

• (1|0)⋅1
• 0∗|1∗
• (0|1)*

More Examples in [Appel]

Multiple regular expressions can denote the same set.

Not necessarily only one unique way to write a language.

Example: (1|0)⋅1=(0|1)⋅1

These two regular languages are equivalent.

Another
Example

Σ={0,1}
Regular Language: (0|1)∗⋅1⋅(0|1)∗

Which of the below languages are equivalent?
A. (1|0)∗⋅1⋅(1|0)∗

B. (0|1)∗⋅(1⋅0|1⋅1|1)⋅(0|1)∗

C. (0⋅1|1⋅1)∗⋅(0|1)∗

D. (0|1)∗⋅(0|1)⋅(0|1)∗

Backtracking to Formal Languages

• A formal language has an alphabet Σ.
• Language is a set of strings drawn from that alphabet.

• Example: Σ = ASCII

• C language: set of all strings that constitute legal C programs.
• infinite, but well defined

• Language of C reserved words: set of all alphabetic strings that cannot
be used as identifiers.

Writing Regular Expressions for
Token Classes

Example: Regular Expressions for Keyboards

i" · "f" | "e" · "l" · "s" · "e" | "p" · "u" …

if

else

public

Inconvenient Notation
Some Abbreviations:
• No dot operator: "i" · "f" ≡ "if”
• Range:[abcd] ≡ (a|b|c|d) ≡ [a-d]
• [b-gM-Qkr] ≡ [bcdefgMNOPQkr]
• Zero or one: M? ≡ (M | ε)
• One or more (Positive Closure): M+ ≡ (MM*)
• Side Notes: These extensions do not extend the power of regular expressions.
• Operators ? and + not really necessary.
• Only need Kleene closure, alternation, concatenation, …

More Regex Examples for Token Classes

• ID - identifier: sequence of letters or digits starting w/ a letter.
• INT - integer: a non-empty string of digits.
• REAL - w/ decimal pt.: (example values: 3.14529, 4., .12)
• WHITESPACE - a non-empty sequence of blanks, newlines, and tabs

Lexical Specification

Lexical specification: defines the (1) token classes and their (2) regular
languages.

• Lexical specifications should be complete.
• We want to always match some initial substring of the input.
• Usually will include rule that matches any single character.
• What if nothing matches?

Example

Notice that rules are ambiguous.

Which rule/regex should match if8?

if IF
[a-z][a-z0-9]* ID
[0-9]+ NUM
([0-9]+"."[0-9]*)|([0-9]*"."[0-9]+) REAL
("--"[a-z]*"\n")|(" "|"\n"|"\t")+ no token, just whitespace
. error

Disambiguation

• Used by lexing tools: Lex, JavaCC, SableCC, among others...

1. Longest match: the next token will be the longest prefix that can
match any regex.

2. Rule priority: if there is a tie, the highest regex takes precedence.
(So, order of rules does matter.)

Next Step
... an implementation so that we can use
regular expressions to match lexical
tokens on the source code.

Practice Problem Using Longest Match and
Rule Priority
Σ={a,b,c}
Given the string: abbbaacc
What tokenization will the following lexical specifications produce?

Token Class Regex
=====================
 A c*
 B b+
 C ab
 D ac*

Token Class Regex
=====================
 A b+
 B ab*
 C ac*

Lexical Specification A Lexical Specification B

