
CSC 416/565:
DESIGN AND
CONSTRUCTION OF
COMPILERS

West Chester University

Dr. Richard Burns

Spring 2023

Today

Course Introduction

Overview of a Compiler

Programming Assignment 0

Questions

1. What is a compilers course?
2. What do you expect to learn?
3. What do you expect not to learn?
4. How difficult is this course?

Some Answers

• Traditionally one of the toughest CS
courses in the curriculum.
• Sometimes a required course for the

CS degree (other colleges).
• At WCU (previously): CSC

416/496/417 satisfy the Large-Scale
Complex System requirement for
undergraduates.
• Big Idea: implementing a very large,

substantial software project.

Other Benefits of a Compilers Course

• Touches every CS course you've taken-to-date:
• (except networks, security?)

• Makes use of lots of things you previously learned
• Arrays, lists, queues, stacks, trees, graphs, maps, regular expressions
• Finite state machines, context-free grammars, recursion, software patterns

More Benefits of a Compilers Course

• Coding a large-scale software project.
• Probably larger than anything you've been assigned previously at

WCU
• More like real-life
• Organization of compiler is in stages
• compiler writing is a case study in software engineering

Even More
Benefits

• Compilers and Interpreters are
everywhere.
• You'll be able to write better code.
• You'll be able to write faster code.
• Better understanding of Java.
• Maybe you'll write your own

programming language in this course...
• ...with array indices that begin at 1

rather than 0.
• ...or simply will learn to take

advantage of parsing tools.

This Course

• Assignments: Written
Homeworks + Programming Assignments
("build a compiler").
• will program our Compiler in Java and utilize

some tools that generate Java code.
• will make our own language (subset of Java).
• will follow the textbook along the way.
• (there's a pretty standard sequence of steps

compilers take to actually compiler a
program).

Course Homepage
https://www.cs.wcupa.edu/~rburns/Compilers

https://www.cs.wcupa.edu/~rburns/Compilers

Resources

COURSE HOMEPAGE. COURSE SCHEDULE. D2L FOR GRADES AND
ASSIGNMENT

SUBMISSION ONLY.

DISCORD SERVER. TEXTBOOK

What is a Compiler?

• What are we going to build over the
semester?
• Let's first

contrast Interpreters and Compilers.

Interpreter

• runs a program by examining its high-level
constructs and simulating their actions, executing it
directly
• Sometimes known as a virtual machine

• interpreter takes your program as input

• does not perform any preprocessing on the input
(typically)

• runs the program on any input data and produces
output

• "on-line" in the sense that its work is part of
running the program

Compiler
• translates the high-level constructs (source

language) into low-level machine instructions
(target language) that can be executed directly by
a computer

• compiler is "offline" in contrast to an interpreter -
it preprocesses the data and translates it into
some code form that can be executed

• when we execute the compiled code, that is when
we input any data

• can run the executable on many different inputs
without compiling again

Why not
interpret all
programs?

Performance is a major reason: native
machine code programs run faster than
interpreted high-level language programs.

Interpreters must parse and analyze a
statement to decode its meaning every
time it executes that statement.

Some languages (C, C++, Java) have both
interpreters (for debugging and program
development) and compilers (for
production work).

Some History

• Compilers have a storied past, dating back to the 1950s.
• term coined by Grace Hopper
• also called "automatic programming", such a big SE task there was skepticism it would ever be

successful
• Hardware was very expensive,

• ... but software was even more expensive, because of the inefficiency of the programming
process.

• 1953: "Speed Coding" interpreter,
• increased productivity of coding
• but executed programs were ~10x slower
• same is true today (this is why Python tries to "compile" intelligently)

• Late 1950s: FORTRAN - FORmulas TRANslated, (rather than interpreted)
• the first successful compiler & machine independent language
• construction required understanding of CS theory and SE skills
• most modern compilers today more or less following the FORTRAN design

Structure of
a Compiler

• This is the high-level structure of a compiler that we
will follow:
• Easier for back-end to perform its functions on the IR,

rather than the source program.

Front End

• “Translating into the IR”
• Steps of the front end:

1. Lexer / Scanner
2. Parser
3. Semantic Analysis

Lexer / Scanner

Consumes the plain text of the source program.
Break source file into individual words or tokens.

Example: This is CSC416/565.

There are 3 tokens in this example. How can we find them?

Example: jdcbqk lnefg hig

What are the tokens in this sentence?

Code Example:

if x == y then z = 1; else z = 2;

How many tokens?

Parser

• Consumes the tokens.
• Analyzing the phrase structure of a

program.
• The scanner and parser check the

syntax of the input program.
• Parser will utilize a grammar

specification
• (see CSC220? or CSC520?)

Example: Grammatical Rules of English

Rule: Sentence -> Subject verb Object endmark

Input: This line is a long sentence .

Is the input a valid sentence given our rule?

Of course English is complicated, and many more rules would be
necessary for a full English specification.

Another Example

Example: if x == y then z = 1; else z = 2;

What “grammatical” rules could we write for code?

Now finished syntactic analysis performed by the front end.
1. Lexing
2. Parsing

Up next to finish front end work: semantic analysis

Semantic
Analysis

Idea: check for inconsistencies in the source code
• Are variables declared?

• only once within each scope, etc...
• Are there mismatches?

• type-consistent use of names
• Can you think of anything else?
Goals:
1. Catch these errors early before we try to

generate target code and spend considerable
time doing so.

2. If necessary, generate meaningful error
messages to the programmer.

Type Checking Example: a ← a x 2 x b x c x d

Should this code type check correctly?

Overview of a Compiler

• Source code is any language.
• Target code is assembly, byte-code, etc.

IR: Intermediate Representation

After the compiler finishes each of the front end phases, it will
transform source code into an IR (intermediate representation).
Various IR forms:
1. Graph - e.g. trees, ASTs
2. Sequential assembly code

Back End

The back end of a compiler typically deals
with translation and optimization.

Q: Why would we want to optimize our
programs?

Automatically modify (or optimize)
programs so that they...

• run faster

• use less memory
• perhaps use less power?

• perhaps use less network access

Optimization

Optimization Example

One possible optimization rule for our consideration to potentially
include in our compiler:
• Transform instances of X = Y * 0 into X = 0

Rule seems like a real improvement, right?

But, this is not a "correct" optimization!
It is not always obvious when certain optimizations would actually
break code.

Optimization Example

X = Y * 0 => X = 0
• Turns out: rule is valid for integers

• ... but not for floats.
• In IEEE floating pt. standard: a special number is defined, NaN (not a

number).
• Definition: NaN * 0 = NaN
• So: NaN * 0 != 0

• This optimization would break algorithms that rely on the proper
propagation of NaN.
• Would break the "The NaN method of partial vector compares" that avoids

conditional tests on all elements.

Another Optimization Example

Original Code

How could this code be improved?

Improved Code

?

• What are the number of steps
needed to do multiplication,
from a register allocation
perspective?
• Importance of ISA: Instruction

Set Architecture

b ← ...
c ← ...
a ← 1
for i = 1 to n
 read d
 a ← a x 2 x b x c x d
end

Register Allocation & Code
Generation

Translate this line of code into assembly:
a ← a x 2 x b x c x d

Initially, we use temporaries instead of registers.

Some concerns:
• machines have limited number of fast registers
• will have to use slow memory if we run out of registers
• can we optimize our usage of registers?

• We are currently using 10 temporaries.
• What is the least number of registers we would actually need for this

code? It would be BAD if the machine didn’t have enough registers.

Optimization is Hard!

• Today: We still do not have great tools for optimization.

L

L

P

P

S

S

O

O

CG

CG

FORTRAN

Today:

One Big Example

Suppose we wish to compile this fragment of code into assembly:
height = (width+56) * factor(foo);

After Scanning:

After Parsing: Intermediate Representation:Assembly Code:

More Next Class!

Deep dive into Scanning (the first phase of the front end)

