CSC 416/565:
West Chester University D ES | G N AN D

Dr. Richard Burns

some202 | CONSTRUCTION OF
COMPILERS

g Course Introduction

aa Overview of a Compiler

. Programming Assignment O

Questions

What is a compilers course?

What do you expect to learn?
What do you expect not to learn?

= Y e

How difficult is this course?

Some Answers

* Traditionally one of the toughest CS
courses in the curriculum.

 Sometimes a required course for the
CS degree (other colleges).

* At WCU (previously): CSC
416/496/417 satisfy the Large-Scale
Complex System requirement for
undergraduates.

* Big Idea: implementing a very large,
substantial software project.

Other Benefits of a Compilers Course

* Touches every CS course you've taken-to-date:
* (except networks, security?)

* Makes use of lots of things you previously learned
* Arrays, lists, queues, stacks, trees, graphs, maps, regular expressions
* Finite state machines, context-free grammars, recursion, software patterns

More Benefits of a Compilers Course

* Coding a large-scale software project.

* Probably larger than anything you've been assigned previously at
WCU

* More like real-life

* Organization of compiler is in stages
e compiler writing is a case study in software engineering

<.
b=
[J

Compilers and Interpreters are
everywhere.

You'll be able to write better code.

You'll be able to write faster code.

e Better understanding of Java.

Even More

- Maybe you'll write your own
Be N eﬂts fi programming language in this course...
e e ...with array indices that begin at 1
rather than O.

e ...or simply will learn to take
advantage of parsing tools.

* Assignments: Written
Homeworks + Programming Assignments
("build a compiler").

* will program our Compiler in Java and utilize
some tools that generate Java code.

Th 1S Course * will make our own language (subset of Java).
* will follow the textbook along the way.

* (there's a pretty standard sequence of steps
compilers take to actually compiler a
program).

Course Homepage

https://www.cs.wcupa.edu/~rburns/Compilers

https://www.cs.wcupa.edu/~rburns/Compilers

COURSE HOMEPAGE. COURSE SCHEDULE. D2L FOR GRADES AND
ASSIGNMENT
SUBMISSION ONLY.

Resources

DISCORD SERVER. TEXTBOOK

What is a Compiler?

* What are we going to build over the
semester?

e Let's first
contrast Interpreters and Compilers.

—|
SOURCE INTERPRETER
CODE

OUTPUT

Computer

Compiler
software

&

Computer

Executable
File

Executable
File

SOURCE t
CODE

INTERPRETER

OUTPUT

——

Interpreter

runs a program by examining its high-level
constructs and simulating their actions, executing it
directly

* Sometimes known as a virtual machine

interpreter takes your program as input

does not perform any preprocessing on the input
(typically)

runs the program on any input data and produces
output

"on-line" in the sense that its work is part of
running the program

Computer

Source
File

Compiler
software

4

Computer

Executable
File

3

Compiler

 translates the high-level constructs (source
language) into low-level machine instructions
(target language) that can be executed directly by
a computer

e compiler is "offline" in contrast to an interpreter -
it preprocesses the data and translates it into
some code form that can be executed

 when we execute the compiled code, that is when
we input any data

e can run the executable on many different inputs
without compiling again

Why not
interpret all
0rograms?

Performance is a major reason: native
machine code programs run faster than
interpreted high-level language programs.

Interpreters must parse and analyze a
statement to decode its meaning every
time it executes that statement.

Some languages (C, C++, Java) have both
interpreters (for debugging and program
development) and compilers (for
production work).

Some History

* Compilers have a storied past, dating back to the 1950s.
* term coined by Grace Hopper

e also callfeclj "automatic programming", such a big SE task there was skepticism it would ever be
successfu

* Hardware was very expensive,

* ... but software was even more expensive, because of the inefficiency of the programming
process.

* increased productivity of coding
* but executed programs were ~10x slower
* same is true today (this is why Python tries to "compile" intelligently)

* the first successful compiler & machine independent language
e construction required understanding of CS theory and SE skills
* most modern compilers today more or less following the FORTRAN design

Structure of
a Compiler

source
code

>

Back End

Character —»{ Scanner —» Tokens —

Stream

Parser

Abstract
—» Syntax —

Tree

Semantic
Routines

Intermediate
> Representation

al X

Optimizers

—

Code
Generator

Assembly
> Code

* This is the high-level structure of a compiler that we

will follow:

e Easier for back-end to perform its functions on the IR,
rather than the source program.

* “Translating into the IR”

* Steps of the front end:
1. Lexer/Scanner
2. Parser
3. Semantic Analysis

Front End

source

IR
code

Lexer / Scanner

Consumes the plain text of the source program.

Break source file into individual words or tokens.
Example: This i1is CSC416/565.

There are 3 tokens in this example. How can we find them?

Example: 7dcbgk lnefg hig

What are the tokens in this sentence?

Code Example:

1f x == y then z = 1; else z = 2;

How many tokens?

e Consumes the tokens.

* Analyzing the phrase structure of a
program.

L * The scanner and parser check the
Pa rser syntax of the input program.
e Parser will utilize a grammar
specification
* (see CSC2207? or CSC5207?)

Example: Grammatical Rules of English

Rule: Sentence -> Subject verb Object endmark

Input: This 1ine 1s a long sentence
Is the input a valid sentence given our rule?

Of course English is complicated, and many more rules would be
necessary for a full English specification.

Another Example

Example:if x == y then z = 1; else z = 2;

|II

What “grammatical” rules could we write for code?

Now finished syntactic analysis performed by the front end.

1. Lexing
2. Parsing

Up next to finish front end work: semantic analysis

Idea: check for inconsistencies in the source code

* Are variables declared?
* only once within each scope, etc...

* Are there mismatches?
e type-consistent use of names

Sema ﬂtIC . e Can you think of anything else?

Goals:

Analysis

1. Catch these errors early before we try to
generate target code and spend considerable
time doing so.

2. If necessary, generate meaningful error
messages to the programmer.

Type Checking Example:a « a x 2 x b x ¢ x d

Should this code type check correctly?

Overview of a Compiler

is any language.
is assembly, byte-code, etc.

IR
source Back End target
code code

IR: Intermediate Representation

After the compiler finishes each of the front end phases, it will
transform source code into an IR (intermediate representation).

Various IR forms:

1. Graph - e.g. trees, ASTs
2. Sequential assembly code

Back End

The back end of a compiler typically deals
with translation and optimization.

Q: Why would we want to optimize our
programs?

Automatically modify (or optimize)
programs so that they...

run faster

use less memory

perhaps use less power?

perhaps use less network access

Optimization

Optimization Example

One possible optimization rule for our consideration to potentially
include in our compiler:

* Transform instancesof X = Y * 0 into X = 0
Rule seems like a real improvement, right?

But, this is not a "correct" optimization!

It is not always obvious when certain optimizations would actually
break code.

Optimization Example

X =Y * 0 => X =0

e Turns out: rule is valid for integers
e ... but not for floats.

* In IEEE floating pt. standard: a special number is defined, NaN (not a
number).
e Definition: NaN * 0 = NaN
* So:NaN * 0 != 0

* This optimization would break algorithms that rely on the proper
propagation of NaN.

 Would break the "The NaN method of partial vector compares" that avoids
conditional tests on all elements.

Another Optimization Example

Original Code

b<—...

C « ...

a « 1

for 1 = 1 to n

read d

a «— a xXx 2 xbxcxd
end

How could this code be improved?

Improved Code

* What are the number of steps
needed to do multiplication,

from a register allocation
perspective?

* Importance of ISA: Instruction
Set Architecture

Register Allocation & Code
Generation

Translate this line of code into assembly:
a — a x 2 xbxcxd

Initially, we use temporaries instead of registers.

Some concerns:

* machines have limited number of fast registers

* will have to use slow memory if we run out of registers
e can we optimize our usage of registers?

* We are currently using 10 temporaries.

* What is the least number of registers we would actually need for this
code? It would be BAD if the machine didn’t have enough registers.

Today:

e Today: We still do not have great tools for optimization.

Optimization is Hard!

One Big Example

Suppose we wish to compile this fragment of code into assembly:

height

(width+56) x factor(foo):

LOAD $56 -> rl
After Scanning: LOAD width -> r2
IADD rl, r2 —> r3
id:height || = |[(|| id:width || + || int:56 ||) || * || id:factor || (|| id:foo) ARG fon
CALL factor -> r4
After Parsing: . . IMUL £3, rd —> ©3
Assembly Code: Intermediate Representation: STOR r5 —> height
psich MOVQ width, Srax # load width into rax
,/ \ ADDQ $56, %rax # add 56 to rax
he'i“;ht MUL MOVQ $rax, —-8(%rbp) # save sum in temporary
/ \ MOVQ foo, %edi # load foo into arg 0 register
ADD CALL CALL factor # invoke factor, result in rax
/l l \ MOVQ -8 (%rbp), %rbx # load sum into rbx
0 \ o IMULQ Srbx # multiply rbx by rax
width 56 factor foo MOVQ $rax, height # store result into height

More Next Class!

Deep dive into Scanning (the first phase of the front end)

