
CLIENT:

Competitive Programming 
Club 

Competitive Programming Club Website

TEAM:Tristan Braun, Tobias 
Bussiek, Connor Hill, Austin Lam, 
Kadin Matoek, Stephanie Thomas



2Agenda

PROJECT GOAL
REQUIREMENTS

BUILD DESIGN
FRONT-END

USER SIGNUP
BACK-END

FUTURE PLANS

02

01

03

04

05

06

07



PROJECT GOAL

Create a dynamic leaderboard website that tracks and displays 
stats from West Chester University Programming Club members



Client Requirements

● Navigation Bar with:
○ Club Logo & Colors 
○ Leaderboard View
○ Join Us option

● Leaderboard Table Displaying
○ Platform
○ Username
○ # Problem Solved
○ Ranking
○ Total Points

● Color Mode
○ Light & Dark 



Client Requirements: Backend

● WCU-Only Ladder Participants

● Self Sign-Up w/ Email 
Confirmation

● Easy to manage/Hand-over

● Real-Time Leaderboard

● Zero Cost Hosting

● Accessible to Alumni



BUILD DESIGN

● Front-end: React.js, Typescript, HTML, CSS

● Back-end: Node.js

● Databases: MongoDB and Redis

● Integration: CodeForces and LeetCode 
APIs

● Containerization: Docker



FRONT-END



FRONT-END



FRONT-END



FRONT-END



USER SIGNUP

● Sendgrid for email 
sending API

● Verification code 
for authenticating 
users



USER SIGNUP

● Alumni sign up 
page

● Uses Sendgrid to 
send the 
application 
straight to board 
members



DEMO



Codeforces API (via official Api)

URL: https://codeforces.com/api/{methodName}

● Fetches official user rating and rank directly 
from Codeforces

● Used for building our Codeforces 
leaderboard

● Lightweight and public, no authentication 
required

● Cached using Redis to reduce load

API’s: LeetCode & Codeforces

LeetCode API (via our own hosted instance)

URL: https://wculeetcode-api.onrender.com

● Based on Unofficial Alfa LeetCode API
● Fetches:

○ Total problems solved
○ Overall ranking
○ Most recent contest result

● Used to build a leaderboard ranked by 
latest contest performance

● Cached using Redis to reduce load
● Severely rate-limited so had to deploy 

as a custom backend to avoid limits

BACK-END

https://github.com/alfaarghya/alfa-leetcode-api
https://github.com/alfaarghya/alfa-leetcode-api


One-click GitHub integration

Easy to deploy both backend and 
frontend

Support for Full-Stack Apps

Free Tier meets our needs

Project is fully hosted

Hosting: Render



Why MongoDB: 

Simplicity, persistence, and easy cloud 
access without local setup. 

Free tier meets our needs

Our Use Case: Store and view User’s 
Name, WCU emails, Coding Websites 
Usernames

Allows Admin to edit, prune users

Progress: Fully implemented ✅ 

Database: MongoDB Atlas



17Database 2: Redis
Why Redis:

● Super fast lookup speed

● Simple and versatile

● Custom TTL (Time to Live)

● Prevents API rate limiting



18

System Architecture: Containerization

● Modular

● Simplified dependency management

● Portability (cloud)

● Simplified development and deployment

Dockerfiles:

● Dev: all ports exposed
● Prod: only frontend exposed



19

Documentation
● External API

- Leetcode
- Codeforces
- Usage

● Backend API
- Signup endpoints
- Leaderboard endpoints
- Usage

● Docker
- Purpose
- Dockerfiles (Dev, Prod)
- Usage

● Frontend
- Pages
- Members/News configuration
- Image formats



20

Leaderboard Architecture 



What We Learned
● Client Meeting

● Adaptability

● Presenting Our Project

● Planning
○ Risks
○ Deliverables

● Working as a team



FUTURE PLANS

● Update the site

● Bug Fixes

● Finalize Documentation

● Hand off project



Questions?


