
Client:
 Dr. Ngo

Team:
Leonard Almeida
Markus Barney
Christopher Calixte
Kirtan Chavda
Chrisma Ndlovu
Connor Woodruff

Auto-Grader LLM

• Mission: Develop an “Auto-grader with AI Feedback” to enhance learning by

providing meaningful, constructive feedback to students on their code

submissions.

• Reason: Address challenges in traditional grading systems by:

• Automating grading processes.

• Providing AI-powered feedback to guide student learning.

• Ensuring consistent, scalable, and timely responses to coding

submissions.

Setup Process

1. Classroom Environment in GitHub
2. Autograding Configuration
3. Active Runner Setup
4. Script for Database and Directories

Database Challenges

Goal:
The goal was to meet the client expectation, which was a SQLite database

Challenges
Then team had challenges regarding permission issues due to file permissions
on Molly. The permission issues were so obstructive that the team had to
consider weather we could meet the clients expectation or recommend
switching to postgres.

Database

Resolution:
After meeting with the client, the client told us to test the system with one user.
While we were unable to meet the clients original goal, the client was not
unhappy with the outcome. If the permission issues do get resolved, the
database could be adapted for implantation for all users.

Database

Achievements:

Database Table Structure

Database Cont

Model File

Model File

Challenges:
1. Passing files to the model
2. Overly direct feedback
3. Creativity in autograder outputs

Model File
Resolution:
• Passed text to the model
• Refined the prompt to give hints, not solutions
• Clarified instructions and worked with the temperature feature

Model File
Achievements:

1. Meaningful feedback generation:
• The model effectively analyze student code and provides tailored,

constructive feedback.
 2. Application:

• Tested across multiple assignments, demonstrating adaptability to various
contexts

Python Script

Python Script

Model Goals and Challenges:
● Improving model response accuracy
● Writing to feedback file
● Testing

Python Script

Resolution:
● Testing with various submissions
● User-tested feedback files with students

Python Script

Achievements:
● Automated feedback generation
● Simulated student submissions
● Automated the connection to the database

Python Script
Database Goals and Challenges:

● Connection to SQLite database
● Reliability and testing
● Insertion into the database

○ Directory location vs parsed files
○ Navigating permission conflicts

● Hashing student name
○ Timestamp

Python Script

Resolution:
● For local testing, both permission and connection errors were resolved by

making a local copy of the database
● Each step was logged using simple print statements

Python Script

Achievement:
• We achieved database communication and insertion.
• We achieved reliable results with comprehensive testing.

Github Actions Runner

Goals:
1. Files(YAML/JSON)

● Clean, efficient syntax with modular design
● Integrations with python script running on the molly server

 2. Main Branch

• Usability: Simple navigation for students
• Efficiency: Optimize the repository structure for efficient LLM script

processing

Github Actions Runner: Challenges/Resolutions

1. Github Main Branch
• Balance user and script function needs

2. JSON File
• Tee command/Nektos/act

3. Privacy & Permissions
• Github API

Github Actions Runner: Achievements/Deliverables

• Automated testing and grading
pipeline

• Good design principle
• Error resilience
• Step documentation and

clarity

Github Actions Runner: Final Diagram

To Conclude …

• Is it ready for production?

• Should the client invest more to deploy/maintain it?

• Should this approach be abandoned?

• Are you handing over a maintainable system?

Q/A Discussion

