
Data Fusion for the Apache Longbow: Implementation and Exper iences 
 

Steve Jameson1, Craig Stoneking2, David G. Cooper3, Peter Gerken2, Chris Garrett2, and Adria Hughes3 
1Manager, 2Senior Member of the Engineering Staff, 3Member of the Engineering Staff 

Lockheed Martin Advanced Technology Laboratories 
Cherry Hill, NJ  08002 

{ sjameson, cstoneki, dcooper, pgerken, cgarrett, ahughes}@atl.lmco.com 
 
 

Abstract 
Maintaining Situational Awareness and Tactical 
Decision Making are workload-intensive and time-
critical challenges for the crew of the Army’s AH-64D 
Apache Longbow. The Apache crew faces these 
challenges with extreme mission demands coupled with 
stressful high-speed, low-level flight. Two technology 
trends show great promise in addressing these problems: 
Decision Aiding and Manned/Unmanned teaming with 
Unmanned Aerial Vehicles (UAV). The US Army 
Aviation Applied Technology Directorate (AATD) is 
leading the Airborne Manned/Unmanned System 
Technology Demonstration (AMUST-D) and Hunter-
Standoff Killer Team (HSKT) programs to develop, 
deploy and demonstrate these technologies in 
operational evaluations. Data Fusion, the capability to 
integrate information from multiple sensors and other 
sources into a consistent Common Relevant Operational 
Picture (CROP), lies at the heart of both of these 
capabilities. A reliable CROP is required to support the 
automated reasoning processes of Decision Aiding, and 
to automatically combine sensor data from teamed 
UAV’s, reducing the significant human workload that 
would occur if UAV data were to be manually 
combined with other fused data representations. For the 
past 11 years, Lockheed Martin Advanced Technology 
Laboratories (LM ATL) has been developing a Data 
Fusion capability specifically designed to support Army 
Aviation decision aiding systems. In this paper, we 
describe LM ATL’s effort to design, implement, and 
test a Data Fusion system for the Apache Longbow 
under the AMUST-D and HSKT programs. 

Introduction 
The Army Aviation community is promoting the 
development of technologies and systems that support 
effective on-the-move command of airborne and 
ground-based maneuver forces through shared situation 
awareness and decision aiding technologies. The 
operational concepts for these technologies and systems 
are characterized by the extensive use of mobile sensing  
 
Presented at the American Helicopter Society 61st Annual Forms, 
Grapevine, TX, June 1-3, 2005. Copyright © 2005 by the American 
Helicopter Society International, Inc. All r ights reserved. 

systems, unmanned platforms, and decision aiding 
systems in the forward elements of the combat force. 
This work is exemplified by the Airborne Manned/ 
Unmanned Systems Technology Demonstration 
(AMUST-D) and the Hunter Standoff Killer Team 
(HSKT) Advanced Concept Technology Demonstration 
(ACTD) programs, led by the U.S. Army Aviation 
Applied Technology Directorate (AATD) [1].  
AMUST-D and HSKT will provide airborne warfighters 
and mobile commanders with improved situational 
awareness from the cooperative construction of a shared 
common operational picture of the battlefield, through 
the sharing and fusion of information from all 
exploitable sensors and intelligence data sources that 
bear on the battlespace. Central to this program is the 
development of the Warfighter’s Associate (WA) 
decision aiding system for the Apache Longbow, and 
the Mobile Commander’s Associate (MCA) system for 
the A2C2X Blackhawk.  
 
LM ATL, under contract to AATD, is providing a 
Multi-Sensor Data Fusion system to provide the 
necessary Situational Awareness for these decision 
aiding systems to function. In addition, under  
AMUST-D, LM ATL has produced a Distributed Data 
Fusion capability for multi-platform operation to 
produce a shared CROP representing the best situational 
awareness available across a network of communicating 
platforms (Figure 1) [3]. LM ATL’s Data Fusion system 
is integrated into both the MCA and WA decision 
aiding systems [4]. Implementation, integration, and 
evaluation of Data Fusion in WA is challenging because 
of the highly embedded nature of the processing on the 
Apache, the sensor information available to the Apache 
avionics system, limitations of the display, and the very 
tightly focused nature of the Apache Pilot and Co-
Pilot/Gunner (CPG) tasks. 
 
This paper provides a brief overview of the general Data 
Fusion capability LM ATL has produced. We discuss in 
detail the limitations and challenges inherent in 
implementing Data Fusion in the Apache Cockpit. We 
describe the details of the design and implementation 
needed to overcome those limitations and challenges, 
presenting results from testing of the WA implementa-
tion  of  Data  Fusion, both in engineering tests and pilot  



 
Figure 1.  AMUST/HSKT Shared Situation Aware-
ness Architecture. 
 
feedback. Finally, we describe our vision for the future 
applicability of Data Fusion in aircraft like the Apache, 
and the developments needed to make this possible. 

Multi-Sensor Data Fusion 
From 1993 to 1999, LM ATL participated in the Army’s 
Rotorcraft Pilot's Associate (RPA) Advanced 
Technology Demonstration program, sponsored by 
AATD. LM ATL developed the multi-sensor Data 
Fusion system [2] that provides a common fused track 
picture to the RPA pilot and the RPA decision aiding 
systems. In the RPA Data Fusion system, data 
representing as many as 200 battlefield entities, from 14 
different types of onboard and offboard sensors, is 
correlated and fused in real time into a consolidated 
picture of the battlespace. The RPA system, including 
LM ATL’s Data Fusion system, was successfully flight 
demonstrated on an AH-64/D in August 1999. The Data 
Fusion system (Figure 2) consists of four main 
elements.  
 

Core Fusion Process

Grapevine
Input

Module

JCDB
Input

Module

Fusion
Dispatch

CORBA
Output Module

Source-
Specific Input

Modules

Track Fusion
Kernel

MTI Fusion
Kernel

Track
Management

Group Fusion
Kernel

Intel Fusion
Kernel

Fusion
Control

Shared
Memory

Output Module

Client-Specific
Output

Modules

JSTARS
Input

Module

 
Figure 2.  LM ATL’s real-time multi-sensor  data 
fusion system. 
 
A top-level control structure, including Fusion Dispatch 
and Fusion Control modules, controls the application of 
fusion algorithms to the input data and ensures that the 

system meets real-time and resource requirements. The 
Fusion Dispatch module evaluates incoming data, 
determines which algorithm set—embodied in a fusion 
Kernel module—should be applied to fuse the data, and 
dispatches the appropriate Kernel to process the data 
set. The Fusion Control module monitors the 
performance and resource usage of Data Fusion, and 
applies control measures such as prioritization or down-
sampling of input data, in cases where the Data Fusion 
process begins to exceed resource limitations (such as 
memory or CPU usage) or fails to meet timing 
requirements. This separation of the top-level control 
from the fusion algorithms allows the Data Fusion 
system to be configured readily to meet different 
performance and resource requirements in different 
applications. 
 
A set of Input and Output modules manages the real-
time interfaces with the sensor systems and the other 
components of the RPA system. The input modules read 
input from the sensor systems at a sensor specific rate, 
using a sensor-specific input protocol, and pre-process 
the input using tailored sensor-specific routines into a 
common intermediate input format and information 
content. The output modules take the fused trackfile and 
output it to a client, in a client-specified format, using a 
client-specific protocol. The modular, object-oriented 
Data Fusion software architecture, including the use of a 
common intermediate data input format, permits a 
single core body of Data Fusion code to be easily 
adapted to multiple input and output formats and 
requirements, facilitating portability. On AMUST-D, 
two different versions of the Data Fusion system will be 
deployed on the Longbow Apache and A2C2S 
Blackhawk helicopters. Both versions will contain the 
same common fusion core, coupled with platform- and 
sensor-specific input and output modules. 
 
A Track Management module stores all track data and 
maintains the relationships among a set of track 
databases, one for each sensor providing input, and a 
Central Trackfile that stores the fused picture. 
Additional databases also provide access to a variety of 
data about platform, sensor, and weapon characteristics 
used by Data Fusion. 
 
A set of Fusion Kernel modules performs the heart of 
the correlation and fusion processing. As with the input 
and output modules, the modular nature of the fusion 
process makes possible the encapsulation of algorithms 
tailored to a specific input data type into a kernel 
module. As input data sets are received, the appropriate 
Kernel is applied to that data set, with the resulting 
output passed to the Track Management module to 
update the fused trackfile.  



The general functional flow followed by each kernel 
follows a similar set of steps. Figure 3 illustrates the 
steps followed for MTI (Moving Target Indicator) data. 
The Prediction function performs time-alignment across 
the sets of data being fused to ensure that valid 
comparisons can be made. The Clustering algorithms 
break down the battlespace into geographically distinct 
clusters to limit the computational complexity of the 
following algorithms. Cost Functions operate on each 
cluster to compute a matrix of composite similarity 
values between each input sensor data item and the 
candidate fused tracks. The Assignment function uses 
the optimal JVC (Jonker-Volgenant-Castanon) 
algorithm to compute matches between sensor data and 
fused tracks. Once the matches are identified, Fusion 
algorithms are applied to update the state of the fused 
trackfile based on the associated sensor data using an 
Interacting Multiple Model (IMM) Kalman Filter. 
 

Fused Common Picture 
at time t

Prediction: Sensor Data
received at time t+1 and

time-aligned

Clustering: Data grouped
into geographic clusters

Cost Functions: Similarity
Metric applied to clusters

Assignment : Associations
formed based on cost values

Fusion:  Algorithms produce
updated common picture at

time t+1  
Figure 3.  Data fusion kernel functional flow. 
 
One of the key algorithmic advances of the RPA Data 
Fusion system was its ability to effectively combine the 
processing of kinematic (position and velocity) 
information with the processing of Class (vehicle type), 
ID (specific vehicle information), and IFF (friend/ 
hostile) information. This processing takes place during 
the comparison of sensor data with fused tracks, by the 
Cost Functions, and during the updating of the fused 
trackfile with associated sensor data by the Fusion 
algorithms. The Class Cost Function and Fusion 
algorithms compare and combine Class and ID 
information expressed in a class hierarchy (Figure 4). 
Each sensor report or fused track has a class 
representation that specifies the confidence of each node 
in the hierarchy. A set of Modified Bayesian Evidence 
Combination algorithms developed by LM ATL is used 
to  compare,  combine,  and summarize this information. 
LM ATL’s work in this area [2] represented a major 
advance in Data Fusion technology. 

Entity

LandAir

Tracked

Armor Artillery SupportAir Defense

Tracked ADU Wheeled ADU

SENSOR 1
CLASS:

TRACKED

SENSOR 2 
CLASS:

AIR DEFENSE

Resulting Class:
TRACKED AIR

DEFENSE Resulting ID:
ONE OF
THESE 4

ZSU-23

2S-6

SA-13

SA-15

Wheeled

 
Figure 4.  Example of class fusion in RPA data fusion. 

Apache Longbow Implementation 

Overview of War fighter ’s Associate and WA Data 
Fusion 
The Warfighter's Associate (WA) system, developed by 
Boeing Phantom Works in Mesa, AZ, is the decision 
aiding system developed under AMUST-D/HSKT to 
support the pilot of the Apache Longbow. WA provides 
the following capabilities to the Apache pilot: 

• A Route Planner that allows the pilot to plan a 
detailed route given a set of high level waypoints, 
terrain, and time and fuel constraints. 

• A Route Assessor that continually monitors the 
route for exposure to threat, speed constraints, low 
fuel, and potential failure to meet time constraints. 

• An Attack by Fire (ABF) Planner that selects the 
most appropriate location from which to attack a 
threat based on a variety of tactical heuristics. 

• Display Aids, including Ownship and Threat 
intervisibility, and Search Area Covered. 

• UAV Management functionality, including a 
TCDL link to the UAV and a variety of UAV 
management aids.  

Integral to many of these functions is the need to have 
up-to-date, consistent, information on threat and 
friendly entities in the battlespace, which is the role of 
Data Fusion. 

The Role of Data Fusion in Warfighter’s Associate 
In order for WA to perform intervisibility calculations 
with respect to a threat, and to plan a route to best avoid 
that threat, it is desirable to have an accurate and stable 
estimate of the threat’s location. Data Fusion provides 
support for these automated decision aiding functions of 
WA, as well as supporting WA in providing the pilot 
with better situational awareness, with an operational 
picture that is more stable, more accurate, more 
complete, and less cluttered. These benefits are realized 
through Data Fusion’s scan-to-scan tracking, multi-
sensor fusion, and false target removal capabilities. 



Scan-to-Scan Tracking contributes to the stability, 
accuracy and completeness of the tactical picture. 
Without Data Fusion, each time the FCR performs a 
scan, all of the targets detected in the previous scan are 
removed from the display and replaced by the results of 
the new scan. Since the FCR scans only a limited sector 
in any one scan, targets from a previous scan can be lost 
from the display when the FCR’s scan sector is moved. 
Even for a target that is detected by both the previous 
and the new scan, it can be difficult for the operator to 
determine which target from the new scan corresponds 
to a target in the previous scan. Data Fusion alleviates 
this problem with scan-to-scan tracking. The first 
detection of a target by the FCR establishes a target 
track, with an identifying track number. With 
subsequent scans, Data Fusion is able to associate a new 
detection of that target with the established track, 
providing continuity of that track across scans. Targets 
not reinforced by the subsequent scan do not 
immediately disappear with the new scan. Rather, Data 
Fusion uses a time-based scheme for eventually 
eliminating tracks that are not reinforced. Each time a 
track is reinforced by a subsequent scan, the position 
location from the new detection can be used to refine 
the accuracy of the existing track. 
 
Multi-Sensor  Fusion increases accuracy and reduces 
clutter in the tactical picture. Feedback from pilots, 
during flight test simulations, emphasized that an 
important situation awareness concern that the pilots 
have is the unambiguous determination of how many 
targets are present on the battlefield. Without Data 
Fusion: if the FCR scanned a target whose position had 
already been previously stored from another source, 
such as TADS, then the pilot would see two symbols for 
the target on the Tactical Situation Display—one for 
each reporting source. Data Fusion alleviates this 
problem by recognizing that the reports from the 
different sources refer to the same object on the 
battlefield, and fuses them into a single target track, so 
that the pilot sees a single display symbol per real-world 
target. Fusing reports from multiple sensors reduces 
clutter and improves the completeness and accuracy of 
information on a track, in the same way that scan-to-
scan tracking does. 
 
False Target Removal builds upon scan-to-scan 
tracking to further improve accuracy and reduce clutter 
in the tactical picture. Data Fusion assists the 
recognition and elimination of ephemeral and persistent 
false targets. An ephemeral false target shows up in one 
FCR scan, but is not reinforced by a subsequent FCR 
scan of the same area. Tracks that are not reinforced by 
subsequent scans decay, or “age-out”, and are removed, 
or “dropped” , after a certain period of time. A persistent  
 

false target represents an actual object on the battlefield, 
so that it shows up in subsequent FCR scans, but is an 
object of little or no interest, or a target that has already 
been destroyed. In this case, once the operator 
determines that the object is not of interest, the WA 
system allows the operator to “disallow”  the 
corresponding target track. When subsequent sensor 
reports on the target are input to Data Fusion, it can 
associate the new report with a disallowed track, and 
refuse to process it. This way, a false target that is 
persistently detected by the FCR can be excluded from 
the display. 

Design Challenges 
Design, implementation, integration, and evaluation of 
Data Fusion in WA are challenging because of the 
sensor data available on the Apache Longbow, the 
highly embedded nature of the processing on the 
Apache, and the need to conform to existing Pilot and 
Co-Pilot/Gunner (CPG) task expectations. Each of these 
challenges imposed design constraints that resulted in 
specific design decisions during the design and 
development of the WA Data Fusion. 

Sensor Data 
WA Data Fusion was required to accept and fuse data 
from a wide variety of sources, for which the original 
data fusion design was well suited, having been 
designed to fuse up to 21 different data sources. 
However, the original design relied on assumptions 
about the periodic nature of the input sources for input 
processing and some of the correlation and fusion logic. 
The fusion algorithms rely on the availability of certain 
attributes for all sensor reports received.. These include 
position of the detected entity, time of the detection, the 
class/ID of the entity, and the uncertainty (error ellipse) 
associated with the detection. The sensor data available 
on the Apache posed design challenges because most 
sources did not report periodically and none of the 
sources provided all of the information required by the 
original Data Fusion algorithms (Table 1). 
 
Almost all of these sensors report neither the time of the 
measurement nor the expected error/uncertainty in the 
measurement. This information is particularly important 
for Data Fusion to make a reasonable estimate of the 
positional uncertainty of any track that it forms from 
sensor data input. This forced us to accept the time of 
reporting to Data Fusion as the time of measurement, 
and to assign to each sensor a default error estimate, 
based on discussions with pilots and engineers 
associated with the Apache program, that could be 
refined, through experience in simulated and actual 
operations, to achieve reasonable results. 
 



Table 1.  The data character istics of the sensors that are fused on the Apache. 

Sensor /Source 
Repor ts 

Detection 
Time 

Repor ts 
Position 

Repor ts 
Position 

Uncertainty 

Repor ts 
Velocity 

Repor ts 
Bearing 

Repor ts 
Class 

Per iodicity 

Enhanced GPS/ 
Inertial Navigation 
Unit (EGI) 

Yes Yes No Yes No No 1 Hz 

Fly-Over Store No Yes No No No Yes Crew Initiated 
Crew Store No Yes No No No Yes Crew Initiated 
Target Acquisition 
/Designation 
System, (TADS) 

No Yes No No No Yes Crew Initiated 

Fire Control 
Radar (FCR) 

No Yes No Yes No Yes Crew Initiated Scan or 
continuous scan 

Teammate Fire 
Control Radar  
(FCR) via IDM 

No Yes No Yes No Yes 
Teammate aircraft crew 

initiates scan and 
transmission 

Radio Frequency 
Inter ferometer  

No No No No Yes Yes Reports at 10Hz, but 
measures at < 1 Hz 

Radio Frequency 
Hand Over  
(RFHO) 

Yes Yes Yes Yes No Yes Wingman Initiated 

Electronic Data 
Transfer Car tr idge 
(EDTU) 

No Yes No No No Yes One Time 

 
The reason for the importance of periodicity in input 
sensor data is twofold. First, Data Fusion makes the 
assumption that a given sensor will never report twice 
on the same target within the same reporting interval, 
the length of which is a property of the sensor. For 
example, a traditional rotating radar system has a 
reporting interval equal to the period of rotation of the 
antenna, and during that period it can reliably be 
assumed that the radar will not report twice on a target. 
This allows Data Fusion to assume that two closely 
spaced reports from the same sensor in that time interval 
must be separate targets. For a sensor that does not 
report periodically, we must identify a time interval 
within which it can reliably be assumed that closely 
spaced reports are from separate targets. Our design 
then accumulates input from that sensor over the 
identified time interval and processes the accumulated 
data as though that data represented a periodic reporting 
of data. 
 
The other reason for the importance of periodicity is to 
determine when a track can be dropped. In previous 
applications, Data Fusion could expect that if a sensor’s 
regular reporting interval elapsed without a target’s 
track being updated by that sensor, then that track could 
be considered lost. Once the track is lost, Data Fusion 
continues to maintain the track, but with increasing 
uncertainty in the track’s location. When the uncertainty 
in the track location reaches a specified threshold, Data 
Fusion “drops,”  (stops reporting on) the track entirely. 
In the current WA application on the Apache, almost 
none of the sensors have a regular reporting interval. 

Many sensors are expected to report only once on a 
target, and others (most notably the FCR) report only on 
activation by the pilot/operator. Without a reliable 
reporting interval for its contributing sensors, the 
approach to the problem of determining when a track 
should be declared lost and dropped needed to be 
modified for WA Data Fusion. Through consultation 
with Boeing engineers and pilots, we worked out an 
approach that is consistent with the way the pilots 
employ the sensors in an operational environment. For 
those sensors that are expected to report only once on a 
target, in most cases the target is assumed by the pilots 
to be stationary and will never be dropped. Data Fusion 
incorporates this assumption. In the case of the FCR, we 
implemented a track age-out rate that caused the track to 
go stale in about 30 seconds. This was selected based on 
pilot feedback as the period beyond which they did not 
feel that the data was sufficiently reliable to be shown 
on the cockpit display. 

Radio Frequency Interferometer (RFI) 

One of the most challenging aspects of the Apache 
sensor data is the nature of the data from the RFI. This 
provides directional indication of radar systems 
employed by threats such as Surface to Air Missile 
(SAM) batteries, and a high confidence identification of 
the threat type. Currently the only information available 
to a pilot is the directional indicator on the display, 
along with the threat type. One of the goals of the Data 
Fusion development was to implement a capability to 
convert this directional information over time into an 



estimate of the target’s position, and – most importantly 
for the pilot – the target’s range, so the pilot can 
immediately determine the magnitude of the threat 
posed by the system. 
 
As part of the development of the WA Data Fusion, we 
designed and implemented a capability for RFI 
Multilateration (Figure 5).  
 

Step 1: Initial Line of Bearing (LOB)
measurement gives bearing with
error.  LOB track is formed.

Step 2: Second bearing line is
associated.  Multilateration
(triangulation) of second line of
bearing measurement
gives long narrow error ellipse,
creating tentative track.

Step 3: Unscented filter
refines position with
additional LOBs, allowing
firm track to be formed

Step 4.
Multilateration over
time gives small
TLE.

 
Figure 5.  Generation of positional tracks from 
bear ing measurements enables WA Data Fusion to 
combine RFI  and other  bear ing data with FCR and 
other  positional sensors. 
 
The RFI Multilateration process consists of four basic 
steps: 

1. LOB Track Formation – A Line of Bearing 
(LOB) measurement from RFI or any similar 

sensor is used to create a track that contains only 
bearing information and ID. 

2. Bearing Association – A second LOB 
measurement is associated with the LOB track 
based on consistency of ID information and 
geometric feasibility. The geometric feasibility 
test verifies that if the two lines are crossed, the 
resulting position represents a feasible target 
location, i.e., one within the maximum range of 
the emitters represented by the ID information. 
The result of the association of the two LOBs 
gives a triangulated position with a positional 
uncertainty ellipse that is typically fairly large. 
This position and uncertainty are used to create a 
tentative track that is not yet reported out of Data 
Fusion. 

3. Track Promotion – When additional LOB 
measurements are detected and associated with 
the tentative track, an Unscented Filter is used to 
refine the position and uncertainty. When the 
uncertainty reaches a threshold, the track is 
promoted to Firm and is reported out of Data 
Fusion to WA or other applications using the 
output of Data Fusion. 

4. Continued Refinement – As additional LOB 
data, or other reports, such as radar reports, are 
received on the target, the position is refined 
further to produce the best possible Target 
Location Error (TLE) from the available data. 

 
A significant amount of effort was devoted to 
development and testing to demonstrate the utility and 
performance of the RFI multilateration. During pilot 
evaluation we were able to demonstrate that this 
capability works well for a single target when the RFI 
sensor is providing fine, or high resolution, LOB data. 
Based on this testing the pilots specifically recognized 
the particular value of the ability to quickly determine 
the position of a hostile threat with the passive RFI 
sensor.  Further  maturation  is in progress to enable this 

 
capability to work more effectively with less accurate 
data and for multiple closely spaced targets so that this 
capability can be integrated and evaluated in operational 
testing. 

Processing Environment 
Data Fusion was originally developed to run in a 
multiprocessing Unix environment on Silicon Graphics 
processors, in which it could run continuously as its 
own process, and rely on the operating system to 
manage fair sharing of the CPU, and memory space 
protection, with respect to other processes. The 
VxWorks operating system used on the Apache’s 
General Purpose Processors provides a very different 
environment. Under VxWorks, the operating system is 



the only real process. All applications, like Data Fusion, 
run as tasks within that process, and share a common 
data address space. For scheduling purposes, tasks are 
divided up into real-time tasks and background tasks. 
Real-time tasks are scheduled to execute in a round-
robin fashion, and are expected to guarantee to finish 
within a small number of milliseconds. As a background 
task, called periodically by the WA process, Data 
Fusion is expected to execute for a few milliseconds at a 
time before returning and relinquishing the CPU, and 
could be preempted at any time, for any length of time, 
by one or more real-time tasks.  
 
Data Fusion shares one of the Apache’s 375 MHz G4 
Power PC – based General Purpose Processors with a 
number of other tasks. As a subtask of WA, Data Fusion 
gets called to execute, on average, about 10 times per 
second. Each time Data Fusion executes, it is expected 
to execute for no more about 8 ms before returning. 
This gives Data Fusion a nominal 8% of the total CPU 
time to perform its processing. However, since Data 
Fusion can be preempted at any time by a real-time task, 
the actual portion of the CPU available to Data Fusion is 
some unknown amount less than 8%. To adapt to this 
execution paradigm, we needed to provide a means by 
which Data Fusion could execute for a few 
milliseconds, save an intermediate state of the 
processing before returning, then pick up where it left 
off upon next being invoked, and internally manage 
memory allocation. The details of this solution are 
described in a later section. 

Inter face/Hardware  
Integrating Data Fusion onto the Apache required 
addressing several challenges related to hardware and 
software platform. The Warfighter’s Associate was able 
to leverage much of the work done under MCA to 
enable Data Fusion to run on Power PC-based 
hardware. However, WA had to meet the requirement 
that Fusion must operate under the real-time operating 
system VxWorks. Finally, Data Fusion – being written 
primarily in C++ – was to interface with software 
written in Ada. 
 
The decision was made early on that it would be more 
productive and less costly to do the development and 
testing in a simulated VxWorks environment as multiple 
instances of the simulator can be run simultaneously. 
We chose the Tornado™ development environment as it 
provided both a VxWorks simulator as well as a cross-
compiler that can generate PPC-compatible code. We 
hosted TornadoTM within a development environment 
that enabled us to compile, test and release software 
packages in a manner commensurate with our MCA 
development. 
 

Interfacing the “host”  Common Operating Environment 
(COE) software to Data Fusion was done via two 
methods – direct procedure calls and data written to 
common “shared memory”  segments. Figure 6 
illustrates these interfaces. Most data transfer occurs 
through the shared memory interface segments that 
include an Input segment for sensor data, an Output 
segment for the fused trackfile data from Data Fusion, a 
Status segment to share information about Data Fusion 
status, and a Control segment to issue control flags, 
such as a request to delete a specific track. 
 

�
CÓ callable functions

Shared memory segments

C
o

m
m

o
n

 O
p

er
at

in
g

 E
n

vi
ro

n
m

en
t 

(C
O

E
)

Control

Status

Input

Output

Shared Memory PointersShared Memory Pointers

Initialize / ResetInitialize / Reset

IterateIterate

Request System TimeRequest System Time

Control ParametersControl Parameters

Sensor ReportsSensor Reports

Fusion Status FieldsFusion Status Fields

Fused TracksFused Tracks

W
A

 D
at

a 
F

u
si

o
n

 
Figure 6.  The structure for  the Data Fusion-to-WA 
interface. 

Data Fusion Software Architecture 
To integrate LM ATL’s Data Fusion system into WA, 
two important implementation challenges were 
addressed. The first required Data Fusion to split its 
processing over a series of short time slices rather than 
running as a continuous process. The second required 
Data Fusion to avoid the use of dynamically allocated 
memory. 
 
LM ATL’s Data Fusion system was originally 
developed to execute as a stand-alone continuously 
executing process, with a well defined set of functions 
executed in a specified order on the input data to 
produce the fused output. Integration onto the Apache 
required that Data Fusion run as a subtask within the 
overall WA execution process, with a strict limitation of 
eight milliseconds on the time that it could execute 
before returning control to the WA process. This meant 
that it was in general not possible to complete 
processing on any given set of sensor data during an 
execution cycle. The solution to this problem was 
implementation of a state machine control structure. 
The state machine keeps track of the current state of 
Data Fusion execution (Figure 7), and permits it to 
resume execution at the appropriate point, with all 



required contextual information, once Data Fusion 
execution is resumed. 
 

Fusion Processing

Retrieve Inputs Process Data Output Data

Update Trackfi le Predict Trackfi le
Forward

Fuse Data

Predict Cluster Cost Assign Fuse

State 1 State 2 State 3

State 1 State 2 State 3

State 1 State 2 State 3 State 4 State 5

Level 1

Level 2

Level 3

Level 4

 
Figure 7.  Data Fusion’s State Machine control 
structure allows it to maintain its state of execution 
over  a number  of shor t-duration execution cycles. 
 
The WA processing environment does not support the 
routine allocation and deallocation of memory that is 
standard in an object oriented program, such as Data 
Fusion. To minimize changes to previously developed 
Data Fusion software and allow commonality between 
the WA and MCA Data Fusion implementations, we 
implemented a custom memory manager utility that 
allocates a single large block of memory at program 
initialization, and then internally manages the use of this 
memory to enable the object-oriented software to 
behave as it would normally. In addition to managing 
memory, the utility also provides statistical profiling for 
memory management to ensure that the software has no 
memory leaks and to support analyzing analyzing 
memory usage.  

Integration and Testing Process 
LM ATL worked in collaboration with engineers from 
Boeing Phantom Works to adapt and integrate Data 
Fusion to run as part of WA within the Apache mission 
systems hardware and software environment.  
 
Throughout the development and integration process, 
effort was made to strike a balance between three 
overarching goals. 
 
As our primary goal, we worked to ensure that Data 
Fusion provides the functionality needed to support WA 
requirements. As an example, when a sensor reports the 
class of a target to Data Fusion, the class ID is mapped 
from the sensor-specific class reporting taxonomy to a 
more comprehensive class taxonomy that Data Fusion 
uses for proper fusion of class IDs from multiple 

sensors. However, once a fused class ID is determined 
for a track, special care needed to be taken to map the 
fused class ID back into an appropriate sensor-specific 
class taxonomy, to support WA processing logic and 
display symbology.  
 
While providing new capability, we also worked to 
meet the goal of minimizing changes required to the 
pilots’  expectations of system behavior. One example of 
this was the adjustment of the age-out behavior of 
unreinforced tracks to approximate that already 
experienced by current pilots. In another instance, it 
turned out that when a track was reported to be 
unknown, it was meaningful for the pilot to know which 
particular sensor data source reported the class. To 
maintain this richness of information in its output, Data 
Fusion was specifically modified so that when a track 
was established based on data from a single sensor, Data 
Fusion reported the track type using the same 
symbology as the reporting sensor, rather than choosing 
a single default symbology for representing all tracks of 
unknown type. 
 
As a third goal, we worked throughout this process to 
ensure that the fundamental correctness and accuracy 
of the underlying core Data Fusion processing was 
retained as updates to the software were made in 
support of the other goals.  
 
The overall development, integration and testing 
process was divided into four major phases. 
 
Initial Por t of Code to VxWorks. In the WA execution 
environment Data Fusion is called as a subtask of the 
larger WA task. WA, itself, runs as a task within the 
Apache’s Common Operating Environment (COE), 
which provides a framework of task management 
policies and services on top of the underlying VxWorks 
operating system. To enable development in our 
laboratory environment, we used the TornadoTM 
VxWorks emulation, from Wind River Systems Inc. 
Running on our normal Solaris development platforms, 
the VxWorks emulation allowed us to initially port Data 
Fusion so that it could be compiled and run in either 
VxWorks or Solaris. This allowed us to identify and 
resolve issues arising from differences between the two 
operating systems. Most of these differences had to do 
with differences in the interface to the operating system 
as represented in the set of system utility functions, (for 
example, the time function), available as C++ function 
calls. With these issues resolved, most of our 
subsequent development and testing could be done 
under Solaris, with a reasonable level of confidence that 
it would run identically under VxWorks. 
 



Integration with a WA Sub:  While Boeing was 
developing the overall WA software functionality, they 
were able to provide a stub version that allowed us to 
test Data Fusion’s interfaces with WA, and the 
execution of Data Fusion within the WA and COE 
calling context. Boeing was able to compile into the 
WA stub program a number of test scenarios that 
provided Data Fusion with input data, and consumed the 
Data Fusion output. These scenarios provided a 
thorough and detailed exercise of the Data Fusion 
functionality. The ability to create a track of each class, 
from each available sensor source was exercised, as 
well as the ability to fuse reports from multiple sensors, 
track moving targets, and manage the ageing and loss of 
tracks. Logs were collected of the data passing over 
both the input and output interfaces between Data 
Fusion and WA, and the contents of the logs were 
analyzed to verify the correctness of the interface 
function. 
 
Integration with WA in Boeing Labs. Once the WA 
software was ready, we began integration testing of 
Data Fusion with the full-fledged WA software within 
the actual target hardware and software environment in 
the Boeing integration labs. During this period Data 
Fusion was tested on a small number of specific 
scenarios provided through Boeing’s simulation 
capability. This most lengthy phase of the integration 
process was characterized by an iterative cycle of 
development and testing. Running in the Boeing lab, 
Data Fusion would be observed while simulating a 
scenario, slightly modified to target a specific aspect of 
the Data Fusion functionality, and bugs or desired 
modifications would be noted. Data Fusion 
modifications would then be developed and tested at 
LM ATL, running under the Solaris operating system. 
The compiled image of the modified Data Fusion could 
then be sent by email to Boeing for targeted retesting 
and verification in the simulation lab. While many of 
these test-and-develop cycles could be carried out via 
email interactions between LM ATL and Boeing 
engineers, there were also periodic visits by LM ATL 
engineers to the Boeing labs, for face-to-face interaction 
with the Boeing engineers, and firsthand observation of 
Data Fusion operation. With this iterative cycle of 
discovery and resolution, we were able to resolve the 
majority of the software interaction and operator 
usability issues. 
 
Pilot-Dr iven Operational Focus:  Finally, Boeing’s 
Pilot-Vehicle Interface (PVI) engineers, as well as pilots 
from both Boeing and the Army, were brought into the  
 
iterative test-and-fix cycle. Running Boeing’s 
Engineering Development Simulation (EDS) lab, LM 
ATL and Boeing engineers could observe Data Fusion 

function, as a part of WA, in operational scenarios with 
a pilot (or engineer) flying the Apache through the 
simulated scenario, and operating the sensors in a full 
mock-up of the Apache cockpit. At times, the pilot was 
put into a scenario and given the ability to “play”  in a 
relatively free-form manner to uncover operational 
issues that were unanticipated by the engineers. 
However, as testing proceeded, a fairly comprehensive 
checklist of operational tasks was developed to test and 
verify the proper operational function of Data Fusion as 
a part of the WA system. For example, a part of this 
routine checklist would call for the pilot to scan for a 
target with the FCR and, having acquired the target with 
the FCR, the pilot would use the Target Acquisition and 
Designation System (TADS) to find and designate the 
target to store its location. While the pilot verified and 
evaluated the expected behavior of the system 
throughout these tasks, LM ATL and Boeing engineers 
would verify that the FCR track appeared in the correct 
geographical location, with the appropriate class, that 
the TADS store properly fused with the FCR track, and 
that the track symbol on the pilot’s display properly 
reflected the update to the track. The pilots and PVI 
engineers provided valuable feedback that led to a 
number of operational improvements to Data Fusion 
and WA behaviors, such as the timing and display of 
tracks going stale, the expected error for certain sources 
of track data, and the interaction of moving FCR reports 
with stationary pre-planned targets. 

Results 
Through this testing process, we were able to validate 
that Data Fusion addressed all required functionality 
and performance to support the WA functionality. More 
importantly, we were able to get feedback from Apache 
pilots involved in the tests that Data Fusion was a useful 
capability that should be brought forward into 
operational use in the Apache and other helicopters. 
There were several features of Data Fusion that pilots 
specifically identified as valuable: 

• The retention of FCR-generated tracks across 
multiple scans 

• The ability of Data Fusion to take reports on a 
single target from multiple sources and combine 
them into a single track, with a single 
corresponding symbol on the display. That is, they 
appreciated the use of Data Fusion to reduce “data 
confusion.”   

• The RFI Multilateration capability was described as 
“phenomenal”  and something that would be very 
valuable in tactical situations once it is matured to 
an operational capability. 

Having undergone thorough testing and evaluation in 
the Boeing simulation labs, we look forward to ground 



and flight testing in the actual aircraft in the second 
quarter of 2005. 

Other AMUST-D/HSKT work 
LM ATL has developed a number of other components 
to support the AMUST-D and HSKT programs. These 
include a Data Fusion component to support the Mobile 
Commander’s Associate (MCA) decision aiding system 
on the A2C2X Blackhawk aircraft. We have provided 
an Agent-Based Data Discovery (ABDD) component 
[5] to retrieve and monitor information from the Army 
Battle Command System (ABCS) C2 applications 
installed on the A2C2X aircraft. In addition, we 
developed support for and integrated the PC Improved 
Data Modem (PCIDM) product that uses the 
SINCGARS radios on the A2C2X to transfer data 
between the A2C2X and the Apache. The combination 
of these components with the WA Data Fusion system 
enables a Shared Situational Awareness capability that 
spans the multiple aircraft participating in the HSKT 
experiments. In the remainder of this section, we briefly 
describe each of these components. 

MCA Data Fusion  
MCA Data Fusion provides the companion capability to 
WA Fusion as part of the MCA decision-aiding system 
on the A2C2X. The underlying functionality and 
software are the same, but because the data available on 
the A2C2X is very different from that on the Apache, 
the behavior is somewhat different. The A2C2X has no 
onboard sensors, so MCA Data Fusion is responsible for 
combining sensor data from JSTARS and other sources 
over Link-16, Friendly position reports received through 
the Force XXI Battle Command Brigade and Below 
(FBCB2) system, spot reports and those collected into 
the Joint Common Data Base (JCDB), and Operator-
entered tracks based on video from the UAV. A number 
of specific behavior logic requirements were 
incorporated to accommodate the needs of processing 
data from Link-16 and the UAV. For example, the 
commander using MCA may request that a strike 
aircraft, such as an F/A-18, engage a target. While the 
engagement is in progress, Data Fusion must ensure that 
it does not drop the target from its trackfile even if no 
data has been received on the target for several minutes. 
Another difference is that MCA Data Fusion has a 
requirement to deal with situations in which there may 
be as many as 2000 friendly and threat entities, and be 
capable of adapting its output rate and processing to 
ensure that it deals as effectively as possible with the 
very large number of entities. 
 
Another difference between MCA and WA Data Fusion 
is in the processing environment. Data Fusion for the 
MCA occurs on a PowerPC Single Board Computer 

(SBC) running a Real-Time Linux implementation from 
TimeSys Corporation. All data to and from the Data 
Fusion system are transmitted over CORBA Event 
Channels using multicast protocols. Despite these 
differences, MCA Data Fusion and WA Data Fusion 
share a common software base, with much of the 
differences between the two versions accomplished via 
run-time configuration using an XML configuration file. 

Agent-Based Data Discovery 
ABDD is a component within the MCA that is 
responsible for controlling the flow of data between the 
data sources within the ABCS onboard the A2C2X and 
the rest of MCA using LM ATL’s Extensible Mobile 
Agent Architecture (EMAA). EMAA agents are tasked 
to retrieve data from the JCDB and the Live Feed Server 
(LFS) within ABCS. The JCDB contains information on 
blue/red unit data and control measures, while the Live 
Feed Server contains real-time data on friendly force 
vehicles. The constant blue track feed from the LFS 
allows the agents to monitor their positions with respect 
to a set of control measures available from the JCDB. 
These control measures include: Named Area of Interest 
(NAI), Engagement Areas (EA), Phase Lines (PL) and 
Helicopter Routes. By monitoring these control 
measures, the agents are able to warn the commander 
when blue forces may be vulnerable if they cross a 
phase line too soon, cross into a potential engagement 
area or are near a blue force helicopter route. The agents 
can also trigger critical decisions when a red force is 
found in a named area of interest and allow the 
commander to send an attack to a specified engagement 
area. 

PCIDM Message Service 
At the inception of the AMUST-D program, it became 
clear that a mechanism was needed to enable transfer of 
Situational Awareness and other data between the MCA 
and WA aircraft, and LM ATL was tasked to provide 
this mechanism. Enabling data transfer required both a 
physical medium, i.e., a set of radios, and a data transfer 
medium, i.e., a set of protocols and terminal or modem 
hardware to encode the data for transfer over the radio 
links. Because the Apache had a previously existing 
capability to transfer data using the Improved Data 
Modem (IDM) over its SINCGARS radio sets, we 
determined that the best approach was to enable the 
MCA A2C2X aircraft to use this same mechanism. We 
identified a commercially available product, the PCIDM 
from Innovative Concepts Inc., as the best route to 
accomplish this. The PCIDM is a PCMCIA form factor 
modem that provides the same messaging capability as 
the IDM on the Apache. Using this product, we 
developed a PCIDM Message Server software 
component that enables the MCA software on the 



A2C2X to exchange data with the Apache using the 
Boeing-developed AFAPD message set. Under 
AMUST-D, this capability is used by MCA to receive 
FCR target and Apache position data from the Apache, 
and to send other sensor data, target handover requests, 
and routes to the Apache from the MCA system. 

Conclusions 
Through the work designing, developing, integrating 
and testing Data Fusion for the Warfighter’s Associate 
under AMUST-D and HSKT, we have shown that 
useful Data Fusion functionality can be performed in the 
processing environment of the Apache Longbow and 
with the sensor data sets available on the Apache. Our 
testing has shown that this Data Fusion functionality is 
useful not only to the other decision aiding functions 
that make up the WA system, but to the pilot as well. 
We expect to continue to mature this capability to 
support an eventual operational implementation. 

Acknowledgments 
The work described in this paper was performed under 
contract DAAH10-01-2-0008 from the US Army 
Aviation Applied Technology Directorate (AATD). We 
would like to acknowledge the support of Keith Arthur, 
Balinda Moreland, Mark Ennis, Ray Higgins, and Tim 
Condon of AATD in this work. Many other people from 
Lockheed Martin and Boeing supported this effort. Jim 
Farrell of LM ATL developed the RFI Multilateration 
and IMM Kalman Filter algorithms that were used in 
WA Data Fusion. Alex Artigas, Karl Bielefeldt, Bob 
Huber, Bob Faerber, Jeff George, and others at Boeing 
Phantom Works in Mesa, AZ, developed the WA 
system and worked closely with us in development, 
integration, and testing of the WA Data Fusion system. 
Chris Bodenhorn, John Kiernan, Peter Stiles, Janice 

Hess, and many others at Lockheed Martin Systems 
Integration – Owego in Owego, NY, developed the 
MCA system and worked closely with us in the 
development and integration of the MCA Data Fusion, 
ABDD, and PCIDM Message Service components. 
Most of all, we would like to acknowledge the 
longstanding and tireless leadership, vision, and 
inspiration of Angela Pawlowski of LM ATL in making 
this work possible. 

References 
[1]  LTC John C. Wright and Kristopher Kuck, “U.S. 

Army Modernization: Eyes on the Target,”  Rotor 
and Wing, April 2001. 

[2]  Don Malkoff and Angela Pawlowski, “RPA Data 
Fusion,”  9th National Symposium on Sensor 
Fusion, Vol.1, Infrared Information Analysis 
Center, September 1996.  

[3]  Steve M. Jameson and Craig Stoneking, “Army 
Aviation Situational Awareness Through Intelligent 
Agent-Based Discovery, Propagation, and Fusion 
of Information," American Helicopter Society 
Forum 58th, Avionics and Systems Session, 
Montreal, Canada, June 11-13, 2002. 

[4] William J. Farrell, Steve Jameson, and Craig 
Stoneking, “Shared Situation Awareness for Army 
Applications,”  Proceedings of 2003 National 
Symposium on Sensor and Data Fusion, San Diego, 
CA, June 2003. 

[5] Peter Gerken, Steve Jameson, Brian Sidharta, and 
Joyce Barton, “ Improving Army Aviation 
Situational Awareness with Agent-Based Data 
Discovery,”  Presented at the meeting of the 
American Helicopter Society Forum 59, Phoenix, 
AZ, May, 2003. 

 


