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Abstract

We present a novel cognitive agent architecture and
demonstrate its effectiveness in the Sense and Respond Lo-
gistics (SRL) domain. Effective applications to support SRL
must anticipate and adapt to emerging situations and other
dynamic military operations. SRL transforms the static, hi-
erarchical architectures of traditional military models into
re-configurable networks designed to encourage coordina-
tion among small peer units. Multi-agent systems are ideal
for SRL because they can provide valuable automation and
decision support from low-level control to high-level infor-
mation synchronization. In particular, agents can be aware
of and adapt to changes in the environment that may af-
fect control and decision making. Our architecture, the En-
gine for Composable Logical Agents with Intuitive Reorga-
nization (ECLAIR) is based on cognitive theories for mo-
tivation and adaptation [6, 13, 21]. Agents respond to ex-
ternal stimuli and internal perception of wellbeing. In nor-
mal situations they act logically, using plans, or workflows,
when there is a known strategy to accomplish a task. How-
ever, when quick reaction is needed, motivation for action
is intuitive or reflexive. Adaptation using machine learn-
ing techniques improves both logical and reflexive behav-
iors in ECLAIR. To demonstrate and evaluate our approach,
we implemented a small simulation environment where our
agents handle the ordering and delivery of supplies among
operational and supply units in several scenarios requiring
adaptation of default behavior.

�
Work done while at ATL

1. Introduction

Throughout history, smart warfighters and commanders
have tried to deceive and confuse their opponents using
any technological means at their disposal. Nation states no
longer maintain a monopoly on armed forces, and this is
fostering the transition to the next stage in the evolution of
conflict: fourth generation warfare (4GW). The technolo-
gies developed to aid the warfighter in these emerging en-
vironments must be designed to support dynamic, adaptive
operations. Sense and Respond Logistics (SRL) aims to de-
liver precise, agile support through adaptive and responsive
demand and support networks [24]. Automation technolo-
gies supporting SRL should respond to events that occur, as
well as aid in the perception and anticipation of short-term
needs.

Quick, adaptive response requires small units at the sub-
battalion levels of the military hierarchy to be both more au-
tonomous in their control, and more coordinated in their ac-
tions. Multi-agent systems can represent the varied roles of
specific units and assets involved in logistics. They can au-
tomate some behaviors such as ordering supplies and pri-
oritizing requests, and they can build an awareness of the
world and other agents that allows them to enhance the de-
cision making of unit commanders. Most importantly, auto-
mated behaviors and decision support must be adaptive to
changes in the environment, and often behaviors and deci-
sions must be coordinated with other units or agents.

We have developed a cognitive agent architecture that
builds a framework for adaptive control and coordinated de-
cision support. The Engine for Composable Logical Agents
with Intuitive Reorganization (ECLAIR) incorporates the
main mechanisms from Piaget’s Cognitive-Stage Theory of
Development [21], and it uses concepts from Damasio’s
Somatic Marker Hypothesis [6] to discover what should



be learned. ECLAIR agents contain modules for stimuli,
awareness, plan behavior, reflex behavior, control/decision
making, and adaptivity. The interaction between awareness,
behavior and adaptivity allows agents to modify their be-
havior based on their perception of world and self states.
Self states are represented by homeostatic vectors (HVs),
in which the comfortable level is a range, not a threshold.
Agent wellbeing is an emotional state that is computed as a
function of the agent’s homeostatic vectors.

In traditional logistic systems, plans for action were pre-
defined and static [24]. In normal operation, a pre-set plan
may be suitable as it gives agents a guide for consistent be-
havior. However, in SRL, “normal” operation is often inter-
rupted by events such as the appearance of a new adversary.
In these cases, the need for dynamic re-planning is clear,
and is provided in our agent architecture. Yet sometimes,
even generating a new plan can be too time consuming for
immediate survival. In these cases, our agents use adaptive,
reflexive behavior that allows them to respond faster to un-
expected or drastic changes in the environment, such as a
loss of a supply unit when an engaged unit is dangerously
low on ammunition. If an agent’s perception of wellbeing
indicates an urgent situation, reflexes will be fired in order
to elicit immediate attention.

Adaptive learning extends both cognitive and reflex-
ive behavior in our architecture. Cognitive adaptivity in-
volves learning parameter and structure modifications for
improved agent workflows using a genetic programming
approach. Reflexive behaviors are adjusted to adapt to dy-
namic changes in the environment using a technique based
on reinforcement learning [15, 27, 26]. Our reward func-
tion compares expectation of the reflex behavior versus ac-
tual observations, including change in the agent’s emotional
state. ECLAIR was developed as an extension to the Exten-
sible Mobile Agent Architecture (EMAA) that has been ap-
plied to many military and DARPA applications [2, 3]. We
demonstrated the cognitive architecture and reflexive adap-
tation using a simulation of net-centric warfare logistics and
showed that agents are able to adapt their reflexive behav-
ior to compensate for unexpected events in the environment.

This paper is organized as follows. Section 2 discusses
related work in agents in military applications and logistics.
Section 3 introduces Sense and Respond Logistics and de-
scribes its background, requirements, and challenges. Sec-
tion 4 then discusses why agents represent SRL well, and
what is required by the agent system to be effective for SRL.
Section 5 describes our agent architecture and details our
approach to plan and reflex adaptivity. Section 6 describes
our logistics application and shows the results that indicate
that agent adaptivity improves speed of command. We con-
clude with future work in Section 7 and concluding remarks
in Section 8.

2. Related Work

2.1. Agents in Military and Logistics Applications

Adaptive agents is a well-studied topic that spans many
approaches and domains [18, 7, 10]. Other agent systems
exist that simulate the military domain and deal with the
problems in it, but none of these systems approach the do-
main with the modern view of Net-Centric Warfare and
Sense and Respond Logistics. TacAir-SOAR [14] is an ex-
pert system-based agent application for automated flight
control and battlefield simulation developed using the rule-
based, cognitive system SOAR. This system may be well-
suited to the previous military application models that had
completely pre-defined knowledge and problem models, but
would not adapt well to 4GW. In today’s battlefield environ-
ments, the environment and the adversarial agents in it can-
not be completely modeled and any existing rules must be
adaptive to environment changes. Unfortunately, sophisti-
cated as it is, TacAir-SOAR has become obsolete for mod-
ern battlefields because it is not flexible.

Another agent system for battlefield simulation is the
University XXI project [12]. This system begins to tackle
cooperation amongst units, but it deals with larger units at
the battalion level, not small, mobile units. A transition in
military thought is occurring that believes that the difficulty
is in controlling lower level units, while control at a higher
level (tactical strategy) is both more understood and more
able to be controlled by human commanders [24]. This sys-
tem also uses the rules pre-built into it for all behaviors. Al-
though it is reactive, it is not adaptive.

The Advanced Logistics Program (ALP) was initiated in
1996 as a five year DARPA/DLA project [11]. Its begin-
nings were rooted in the exploration of logistics planning
and execution during Operations Desert Shield and Desert
Storm. It was theorized that if information systems had bet-
ter been able to handle specific logistics problems such as
scheduling and coordination, then significant improvements
would have been possible in resource sequencing and over-
all control over the supply chain. Thus, the challenge for
ALP was to develop the technology to support an end-to-
end logistics system with automated plan generation, exe-
cution monitoring, end-to-end movement control, and rapid
supply and sustainment.

To address this challenge the ALP team devel-
oped the ALP agent architecture. This architecture pro-
vided advanced research into the areas of cognitive
agency (capturing models of human cognitive processes
in agents), fine-grained information management (tech-
niques designed to minimize information propagation), and
component-based design. Core pieces of the ALP archi-
tecture were made publicly available as open source as the
COGnitive Agent ARchitecture (COUGAAR) [11].



Lockheed Martin’s Advanced Technology Laborato-
ries (LM ATL) has developed agent technology that of-
fers promising solutions to the problems underlined in
SRL. ATL has applied agent technology in more than two
dozen projects covering a full range of intelligent sys-
tems, including information management for time-sensitive
strike, situation awareness for small military units, and ex-
ecution of user requests entered via spoken language di-
alogue [4, 5, 8, 19, 9, 20]. ATL’s agents were also used
in Navy Fleet Battle Experiments (FBE) as human aid-
ing tools [20].

2.2. Cognitive Architectures

The two leading cognitive architectures with a psycho-
logical basis are SOAR [17] and ACT-R [1]. Both are hy-
potheses for answering Allen Newell’s concept of a Uni-
fied Theory of Cognition [23]. Newell saw that in a person,
there are many interacting components that must be inte-
grated into a single comprehesive system, and believed that
the single system is the source of all behavior. Thus, the goal
of a cognitive architecture is to have one system that gives
purpose to the many components that make up a thinking
person. ACT-R and SOAR were developed based on con-
temporary psychological experimental results, and were not
built on previous developmental theories.

ACT-R is a cognitive architecture designed as an inte-
gration of components discovered in psychology research.
This model is primarily meant to accurately simulate human
behavior. Given a specific cognitive theory, ACT-R can be
used to model the components of the theory. Once the model
has been created, experiments can be made in order to get
results very similar to human experimental results. In ad-
dition, the model can be used to extend previous theories
by creating a novel experiment for the model. ACT-R also
has a set of modules that represent different functional as-
pects of the brain. The interaction between these modules
happens by each module exposing part of its activity into a
buffer. The central production system uses the data in the
buffers for its processing. ACT-R has primarily been used
for psychological research, but has also been used to simu-
late computer generated forces for training purposes [1].

SOAR is a cognitive architecture focused on the func-
tional requirements of human level intelligence. The three
constraints that SOAR attempts to satisfy are goal driven be-
havior, continuous learning from experience, and showing
“real time cognition.” The goal is to have a system where
memory can be directly used for action. A production sys-
tem is at the heart of the architecture. The decision cycle
has seven steps: Input, State Elaboration, Propose Opera-
tor, Compare Operators, Select Operator, Apply Operator,
and Output [22]. SOAR’s mechanism for learning, called
“chunking,” has proven to cause unexpected results, and in

many systems, such as TacAir-SOAR, has been turned off.
Recently, experiments have been done to add reinforcement
learning techniques to SOAR in place of the “chunking”
mechanism [22].

While developing the ECLAIR architecture, ACT-R and
SOAR were considered as possible starting points, but both
were found to have a different strategy from our approach.
Table 1 in Section 5.1 shows a comparison of our approach
with that of SOAR and ACT-R. ECLAIR is further dis-
cussed in Section 5.1.

3. Sense and Respond Logistics

Net-Centric Warfare aims to combine “information-age
concepts in the evolving strategic environment, enabling
dispersed, semi-autonomous combat capability packages
that produce coherent, mass effects via speed and coor-
dinated efforts.” [24] Today, many such ‘capability pack-
ages’ exist as Net-Centric Applications (NCAs) that run
on the Global Informational Grid (GIG) and process all
types of data (eg. HUMINT, SIGINT, IMINT, MASINT,
OSINT, and GEOINT). When NCAs are integrated, they
achieve novel capabilities in information delivery through-
out a coalition environment.

Sense and Respond Logistics (SRL), is the process that
handles the supply chain in 4GW. In NCW, sustaining op-
erating tempo (OPTEMPO) is as much a logistics issue
as it is kinetic. In order to maintain appropriate warfight-
ing capability levels, the supply chain must not be inter-
rupted. Unplanned operational pauses due to logistics prob-
lems are considered planning and adaptability failures. As
the battlespace becomes ever more complex, the need for
agile, robust logistics support of warfighter maneuvering
becomes more crucial. As a result, current logistics plan-
ning is quickly becoming obsolete. Increasing numbers of
asynchronous threats and specialized missions have caused
the logistics problem to evolve. New problems are occur-
ring including high rates of operational change, closely cou-
pled events, unit-to-unit de-synchronization, and unaccept-
able speed of command. SRL must operate in an uncertain
environment in which actions that have a positive effect to-
day may not have the same results tomorrow.

For these reasons, Sense and Respond Logistics calls
for new technology requiring, “adaptive responsive demand
and support networks that operate in alternate structures that
recognize operational context and coordination.” [24] The
solution to these problems requires dynamic network flexi-
bility using properly orchestrated NCAs in order to deliver
the right goods at the right times in a highly unstable en-
vironment. SRL aims to improve the speed that goods and
services reach operational units in the battle theater. SRL
is meant to be inclusive of coalition partners and respon-
sive to unpredicted events.



4. Agent Systems for SRL

According to the United States Department of Defense
[24], a networked, heterogeneous multi-agent system is
needed to support Sense and Respond Logistics. These
agents should represent all roles in the logistics domain, in-
cluding the operational units (consumers), suppliers, and as-
sets. In our agent architecture, roles are developed by sup-
plying default stimuli and motivation to initiate action, and
plans and reflexes to handle action. We are able to com-
pletely separate the agent architecture from the domain-
specific extension. Methodologies for defining the specifics
of agent behavior are provided for the scenario developer.

Another SRL system requirement is automated aids to
support cognitive decision making [24]. These aids can take
the form of automated control by the agent or agent-assisted
decision support for the warfighters. In this paper we dis-
cuss methods, based on a cognitive agent architecture, to
provide automation for low-level control normally handled
by humans. This frees warfighters to concentrate on more
complex aspects of warfare. Our command and control is
in the form of tasks for an agent. A task is a unit of ac-
tion, for example an action to move or make a request. A
plan or workflow is a series of tasks, and a reflex is a sin-
gle task.

The other aspect of decision support involves supplying
a user with information and options in the form of a recom-
mender system. This will aid the user with decisions that
still need to be made by a human. The recommender sys-
tem can be an extension of the automated agent control sys-
tem. An agent will use the same decision process to find the
best plan of action, but instead of completing the task au-
tonomously, it will supply weighted options to the user and
complete the task based on the user’s input. We will be fo-
cusing on this capability in our future work.

SRL is considered to be a complex adaptive system [24].
Agents can adapt by reorganizing to suit the environment, or
by modifying their behavior to improve their effectiveness.
Our agents currently modify behavior by adapting plans and
reflexes to make the outcome of their actions more closely
match the expected results. In this paper we discuss our ap-
proaches to adapting cognitive (plan-oriented) and reflexive
behavior. Genetic programming (GP) [16] is used to adapt
the parameters and structure of plan behavior. Genetic ma-
terial is composed of a GP tree representing a plan or work-
flow. Fitness of the plan is collected while the plan is be-
ing executed and is used to modify or generate new plans
that adapt to the environment.

Currently, agents react to their perception of internal
state by firing reflexes. The goal of any agent is to keep
its homeostatic vectors in a comfortable range. Any home-
ostatic state outside of this range will result in a task or se-
ries of tasks being performed. The expectation is that the

task will be performed as indicated, for example a request
for a resource results in receiving the resource. We also ex-
pect that the original problem that initiated the task will be
ameliorated. If either of these expectations is not met, then
the parameters for the tasks may be adjusted. We based our
technique from reinforcement learning [15, 27], using re-
ward from task results to determine the value of task pa-
rameters. We discuss our technique in further detail in Sec-
tion 5.3.

5. Agent Architecture for Adaptivity

5.1. ECLAIR, A Cognitive Architecture

5.1.1. Motivation ECLAIR is a technology that supports
speed and coordination between many dispersed forces.
NCW at the sub-battalion level consists of a dynamic envi-
ronment with rapidly changing missions and contingencies.
An ideal situation for logistics is that everyone is supplied
just in time. Hierarchical distribution systems have had lit-
tle success when applied to a scenarios in which troops are
supplied when they are expected to run out of supplies [24].
The solution to such a problem consists of bringing deci-
sion making for changing supply routes and determining
priorities down to the squad and unit level. The optimiza-
tion of logistics tasks in a sub-battalion NCW environment
is an optimization problem with a moving target, a.k.a. a
dynamic optimization problem. Learning has proven to be a
good tool to deal with such a moving target using both rein-
forcement learning and genetic programming. In addition,
ECLAIR has a reflex learning system which reacts quickly
to sudden changes in the environment.

Basic machine learning techniques require both careful
selection of the necessary features for learning as well as
a function to determine whether learning is improving be-
havior [25]. In a supervised learning scenario, the selected
features are the inputs to the learning algorithms, and the
function is based on a difference between the right answer
and the output that the learning system gives. Given the dy-
namic nature of the Net-centric environment, it is unlikely
that a general fitness function could be created, and even
more unlikely that the set of features useful for learning
could be determined ahead of time. The ECLAIR architec-
ture uses a cognitive model to help determine the fitness and
relevant features while processing, using a measure of well-
being.

5.1.2. Theoretical Background ECLAIR is a cognitive
model based on developmental cognitive psychology re-
search and neuropsychological research. Though many de-
velopmental theories contributed to the ECLAIR model, the
two most prominent in the architecture are Piaget’s adapta-
tion theory [21], and Damasio’s Somatic Marker Hypoth-
esis [6]. Piaget’s adaptation theory consists of three main



concepts: Assimilation, Accomodation, and Equilibration.
Assimilation processes unfamiliar input in the same way
that one would process the most similar familiar input.
Accommodation changes the processes to deal with unfa-
miliar input. Finally, Equilibration, balances the aforemen-
tioned processes. The Somatic Marker Hypothesis stems
from Damasio’s belief that reasoning is not the only basis
for decisions, but instead they are made based on gut feel-
ings. A somatic marker is defined by Damasio as a trig-
ger that recalls feelings related to the available decisions.
The decision is made based on the best expected feeling
given the available actions for the current circumstance.
Each memory of feelings becomes a somatic marker which
is used as a map from circumstance to action.

5.1.3. Perception Our cognitive model approaches the
processing problem from the perspective of interaction with
the environment. This is similar to the Observation, Ori-
entation, Decision, and Action (OODA) loop model used
in military operations [28]. The main difference is that our
model has a clear representation for learning and devel-
opment, while the OODA loop does not. We separate our
model into two interdependent processes. One is the deci-
sion loop which closely reflects the OODA loop, and the
second is the adaptivity loop which is observing the deci-
sion loop until needed (Figure 1).

Instead of Observation, a cognitive model has percep-
tion. Perception affects both external and internal features.
For a living being, external perception is in the form of
sensed sound, smell, sight, taste, and touch, while internal
perception includes hunger, pain, and comfort. ECLAIR’s
Stimulus and Awareness Modules interact within an agent
to create stimuli from external and internal perceptions.

Orientation for a cognitive model occurs through in-
teraction between perception, attention, and memory. In
ECLAIR, when the Awareness module receives a stimu-
lus, it matches the stimulus with reflex and plan behaviors
that have the stimulus type as a condition. In addition, the
stimulus updates the self and world representations. Part of
these representations are Homeostatic Vectors(HVs), repre-
senting ideal levels of operation for different aspects of the
agent. HVs are a mechanism for having multiple goal states,
where the goal is for all states to be at an ideal level. The fur-
ther away each variable is from its ideal level, the lower the
wellbeing of the agent is. Orientation links the model of the
world with the available behaviors and creates the basis for
decision making.

5.1.4. Action Damasio’s Somatic Marker Hypothe-
sis makes light of an ongoing debate about the nature
of decision making. Based on this debate, decision mak-
ing appears to lie on a spectrum from reasoning to reac-
tion. ECLAIR combines the decision making behavior of
two methods in order to decide on an action. Behavior is ei-

ther handled by a reflex, or by part of a plan. If a reflex is
fired, the activity within it will be completed if it is not in-
hibited. If a plan is enacted, the plan will continue unless
a higher priority plan is started. In the OODA loop, the fi-
nal step is the Action. For a human, examples of action
are speaking, moving one’s self, manipulating an ob-
ject and glancing. Agents on the other hand may be
sending data, retrieving data, computing, sending con-
trol commands, ordering supplies, et cetera. The action is
encapsulated in an activity chosen during the decision mak-
ing stage.

As stated previously, learning does not have a firm place
in the OODA loop. Orientation would be the easiest place
to add learning to the OODA loop because in this stage,
one can observe of all that is happening. However, there
are a couple of problems with this. The first is that learn-
ing would slow down the orientation process, and the sec-
ond is that learning during the orientation step does not al-
low for learning in one of the other three steps. In addition
to having the decision loop in ECLAIR, there is a separate
learning process that happens in parallel. This process al-
lows for learning to happen at any stage of the decision pro-
cess, and allows the decision loop to process without an ex-
pensive learning step. Figure 1 illustrates the connection be-
tween the decision loop and the adaptivity loop.

5.1.5. Adaptivity ECLAIR’s Goal Based Adaptiv-
ity module can assist learning at any stage. The mod-
ule is dedicated to improving each stage of the OODA loop
by modifying and extending functionality. The Adaptiv-
ity Module listens to events from all other modules that
are relevant for learning. The agent adapts in the Obser-
vation stage as input comes in through the stimulus mod-
ule. The Awareness Module matches what it can and
puts the unmatched input in a queue for later process-
ing. The queue of unmatched input is one starting point
for Assimilation. The input that doesn’t match can be con-
verted into its closest match, and then processed as if it
were a known input.

As performance decreases, the HVs will move away
from their ideal levels, causing low wellbeing. This will
trigger adaptivity to find a better action. Eventually, the
agent will Accommodate to the previously unmatched input.
During the Assimilation phase, the agent adapts its orienta-
tion. Rather than setting aside the input, the agent translates
the input into a form that can be processed. During the Ac-
commodation phase, the agent creates a modified action for
the input. This requires small changes to; orientation, since
the inputs have to be distinguished; decision, since a new in-
put condition has to be matched to a behavior; and action,
since a new action or set of actions may be required to suc-
cessfully accommodate to the novel input. The successful
accomodation will be recognized by the agent through its
wellbeing improving.



Figure 1. The ECLAIR Process Loop. The Goal Based Adaptivity loop listens to the decision loop dur-
ing processing. When the agent wellbeing goes down, the agent becomes frustrated and determines
the source of frustration. Once the source ist determined, either Assimilation or Accomodation pro-
cessing is enacted to adapt to the frustration.

The structure of the Goal Based Adaptivity Module al-
lows for different learning mechanisms to be used. The plan
adaptivity and reflex adaptivity described below are exam-
ples of two such learning mechanisms. A genetic program-
ming mechanism is discussed for plan adaptivity and a re-
inforcement learning based approach was implemented for
reflex adaptivity.

Table 1 compares ECLAIR with ACT-R and SOAR.
ECLAIR focuses on the control of the learning process
while the other models attempt to model human behavior.
ECLAIR also makes a distinction between behaviors that
are part of a plan, and purely reflexive behaviors.

5.2. Plan Adaptivity

An ECLAIR agent’s plan, also called a workflow, is a
list of tasks linked by execution paths that can be condi-
tional or unconditional. Tasks on an unconditional path are
always executed, while tasks on a conditional path are exe-
cuted only if the condition is met. Each task can take a cer-
tain number of task dependant parameters. The plan adap-
tivity mechanism was designed for this type of workflow.

Our approach to plan adaptivity is named Evolutionary
Platform for Agent Learning (EPAL) and was described in
detail in [3]. Genetic programming (GP) invented by John
Koza [16] constitutes the basis for adaptivity in EPAL. GP
uses the principles of Darwinian evolution for performing
program synthesis by genetically breeding a population of
computer programs. The basic operators of reproduction,
crossover and mutation operate on individuals in the popu-
lation and a fitness function describes how good a given in-
dividual is. In GP each individual program is represented as
a tree.

In EPAL we represent agent plans in a GP tree form
and GP operators work on agents’ genetic material (i.e., GP
trees) to generate new agents that have learned to overcome
certain problems in their environment. As agents execute in
the environment their fitness is collected. The value of fit-
ness guides the evolutionary learning process. The method
developed is a general method that can generate completely
new agent plans, as well as related plans but with new pa-
rameters. Augmenting an agent’s plan is synonymous with
changing the agent’s behavior, thus the method can be used
for generating new behaviors as well.



ECLAIR SOAR ACT-R
Maps to Brain function No No Yes
Use to compare
with human experiments No Yes Yes
50 ms minimum
process timing No Yes Yes
Production System No Yes Yes
Sub-symbolic level Pending No Yes
Learning Methods Genetic Programming, Chunking of Productions Utility Learning,

Reinforcement or Reinforcement Learning Production Learning
Cause of learning motivated by Chunking happens when happens as part

frustration declarative memory is of storing memories.
specialized, RL happens
from numeric preference rules

Learning Switch Wellbeing Determined before run Always on
Distinction between Yes No No
planned and
reflexive action
Theoretical Basis Cognitive Development Functional Requirements Integration of Components

Table 1. ECLAIR is compared with SOAR and ACT-R, the two leading cognitive architectures.

Our ECLAIR software agents are more complicated than
the small software programs that GP usually evolves. In or-
der to evolve meaningful agents in a realistic time frame
our representation of GP agents needs to be at a higher level
than simple Java instructions and their parameters. EPAL’s
main GP building blocks are the individual tasks that com-
pose a workflow.

We have not used the EPAL agent adaptivity in a lo-
gistics scenario yet, although we are currently integrating
EPAL into ECLAIR’s plan and adaptivity modules. We have
demonstrated EPAL’s operation and usefulness in a scenario
similar to Fleet Battle Experiment-Juliet (FBE-J). Our ex-
periment showed that agents learned to match sending rates
of messages with the urgency of the messages to generate
plans that improve overall network performance [3].

5.3. Reflex Adaptivity

A reflex in ECLAIR is composed of a stimulus, an ac-
tivity, and a set of parameters for the activity (Figure 2).
We use an approach based on reinforcement learning (RL)
[15, 27] to learn the best parameters to use in an activ-
ity given the stimulus. Reinforcement learning is based on
two major principles; receiving immediate reinforcement
for taking actions in an environment given the state of the
environment, and generating an overall value for a state-
action mapping using delayed reward. Our reinforcement
problem calculates the overall values of stimulus-activity-
parameter mappings from the reward received as the results
of activities are observed.

Figure 2. A reflex in ECLAIR. Contains a stim-
ulus, activity, and parameters to the activity.

A typical reinforcement learning problem is composed
of a set of discrete states, � , and a set of discrete actions,�

. The high-level goal is to learn the best mapping between
state and action ( 
�������
���������� � ), or the best pol-
icy. In our architecture, a state is composed of a stimulus
and an activity. Stimuli in our logistics scenarios include in-
ternal states (represented as HVs) such as LOW FUEL and
VERY LOW FOOD. Given these internal states, our agents
will take an action; for example, ORDER FUEL and OR-
DER FOOD, respectively. We create � from combinations
of stimuli and activities. Formally, ������� � , where � are
all possible stimuli and � are all possible activities. In our
current logistics application, � is pre-defined, however, Ac-
comodation could be used to extend � .

The parameters to the activity, for example who to or-
der from, how much to order, and what priority the order
should be, are variable and constitute our learning problem.
We create

�
from the occurring combinations of parame-



ters:
�"!"#%$&('*)*+ & � + & !�, ) � ,.-0/1/2/ � /2/1/3,54�/1/2/ � /2/1/6,.7 ,

where
,84

is a parameter type and all its values, 9 is the num-
ber of parameter types for activity : , and ; is the number
of activities. Our policies are then composed of < stimlus-
activity = - < parameter set = mappings, corresponding to RL’s
state-action ( 
%�>� ) mappings: 
 ! <@?A�3B8=C�.� !ED , where?����F�.BG�H� , and

D � + & . Our adaptivity module for re-
flex behavior stores overall values for policies that it com-
putes over time.

Reinforcement is computed by comparing the expecta-
tion of the activity with the observations that are seen as a
result of the activity occuring. This was the main challenge
in our approach as the observations from an activity are not
immediate and may not be seen until several intermediate
tasks are completed. For example, in our logistics simula-
tion, the expectation from ORDER FUEL is that we will re-
ceive the amount of FUEL we ordered within a certain pe-
riod of time. In order for an agent to receive a resource, a
supplying agent must receive the order for the resource, and
then must send out an asset to complete the order, assum-
ing it has the asset and resource available. The whole op-
eration could potentially take several simulated days, even
with a relatively fast chain of command. If the supplying
agent does not have an available asset or the requested re-
source, the order may never be filled.

When an agent fires a reflex, its awareness module gen-
erates an expectation object that indicates the expected re-
sults, as well as a time that the result should be expected by.
When the agent receives a stimulus, it generates an obser-
vation object if the stimulus is of a type that it is interested
in. The agent then attempts to match the observation with
an expectation using an ID that may indicate that the ob-
servation occurred as a result of the reflex being fired (the
reflex that generated the expectation). For example, a RE-
CEIVED FUEL observation may have occurred because of
an ORDER FUEL reflex. If a match occurs between the ob-
servation and an expectation, the agent’s adaptivity mod-
ule then compares the details of the expectation with the
observation to generate an expectation versus observation
( IKJML ) value. Figure 3 shows the process flow for reflexes.
The IKJ%L value is between NMOQP R (does not meet expecta-
tions) and OCP R (meets expectations). If the observation does
not occur within an extended period of time, an expired ob-
servation will be created, and ISJTL will be NMOQP R . If the
observation occurred within the expected time, and had the
correct parameters, then the ISJTL will be OCP R . Values be-
tween NMOQP R and OCP R could occur if the observation was late,
or had only part of the requested resources. Just like moti-
vation and behavior, the expectation object is configurable,
so other methods for computing IKJ%L could be used.

Reinforcement value is a function of the ISJTL and the
change in homeostatic vectors that may occur due to a reflex
being fired. This causes the awareness module to consider

Figure 3. The process flow for a reflex in
ECLAIR. The solid white nodes show the be-
havior of the agent firing the reflex. Boxes
represent the modules that handle the nodes.
The node with diagonal lines could be han-
dled by other agents.

that even if the reflex yielded the expected results, it may
not have been the correct approach if it did not improve our
situation. Reinforcement is given to the policy that caused
the observation to occur, as well as previous policies that
have been attempted that used common parameters in the
same situation. We are attempting to generalize reinforce-
ment without over-fitting (reinforcing the wrong behavior).
Formally, the reinforcement, U , for any policy that has been
used while running the system is as follows:

U !WV*X &ZY\[ IKJ]LW^�_ `aJ]bdc egf5hHeCi2cc egfQc
j

Where :Fk the age of the policy being rewarded (most re-
cent=1), _ `aJ !

the change in homeostatic vector level
(positive= improved, negative=deteriorated),

,*l
= the set of

parameters in the policy’s activity,
,0m

= the set of parame-
ters in the observation, and

V � Y and ? are learning-rate vari-
ables.

Overall value for a policy is the summation of its re-
inforcement, U , over time. When selecting a policy to use
for a given state, usually the policy with the highest overall
value is used. However, exploration will occur at a rate de-
pendent on the wellbeing of the agent. If wellbeing is high,



then we consider that the agent is doing well with his de-
fault or learned behaviors, and do not explore often. How-
ever, if wellbeing is low, then the agent explores more often
in order to find better policies to improve wellbeing. Explo-
ration is a key component of reinforcement learning as it
allows the agent interacting with the system to try actions
that it may not have tried if it was only considering the cur-
rent “best” action [27]. It may be the case that a new ac-
tion is better for a given situation than anything the agent
has tried before. Balancing exploration with policy is also
a difficult problem in RL. Our solution elegantly incorpo-
rates knowledge about our internal emotional state to com-
pute an exploration rate that is well suited to the cognitive
architecture.

6. Application

6.1. Logistics Simulation

ATL created a demonstration application that shows how
ECLAIR agent adaptivity applies to logistics. The proto-
type shows solutions to two important SRL goals: ECLAIR
agents improve the speed of command in a robust fashion
and adapt to the changes in a demand driven network.

Figure 4 depicts the application’s interface. ECLAIR
agents represent three operational units (OU) (boxes with
an X) and two supply units (SU) (boxes with a horizontal
line). As an OU, the ECLAIR agent monitors its homeo-
static states that indicate how much fuel, ammunition, and
food it has. As the OU consumes its resources, it becomes
increasingly unhappy until it is stimulated to request a re-
supply. Re-supply requests are drawn as arrow-headed lines
pointing to the SU the request was sent to. OUs set their ex-
pectations based on which supply unit they sent the request
to, how much they requested, and how long they expect to
wait for the request to be fulfilled. When supplied, the OU
agent makes complementary observations on which supply
unit delivered the resource, how much of the resource it re-
ceived, and how long it had to wait. The expectations and
observations of an OU influence its decision to continue us-
ing a particular SU or to choose a new one.

ECLAIR agents also represent supply units. Behavior for
re-supplying supply units is similar to operational units, ex-
cept that SUs will send an asset to a ship (circle labeled
“AR”) instead of sending a request to another unit. The as-
sets include trucks (circle containing a box) and helicopters
(hemisphere containing a bow-tie). For these simulations,
we concentrated on adaptivity of OUs, although the capa-
bilities to adapt SU behavior were available.

Figure 4 depicts a scenario where the left-most SU, SU1
has nine assets and the right-most SU, SU2 has only one.
The OUs, (OU1, OU2, and OU3) are initially assigned a de-
fault supply unit to order resources from. By default, OU1

Figure 4. The ECLAIR logistics demonstra-
tion before adaptation (beginning of simula-
tion). OU2 and OU3 order resources from de-
fault supply unit (SU2).

requests resources from SU1 and OU2 and OU3 request re-
sources from SU2. In Figure 4, the arrows from OU2 and
OU3 show requests for resources being made to SU2.

The demonstration uses the concept of Operational
Availability (AO) as a metric in determining whether adap-
tation is truly occuring. AO measures how long every OU
has to wait to be supplied. AO is determined by sum-
ming up the personal AO scores (PAO) of each opera-
tional unit. Each OU has a maximum PAO of 333, making
AO a maximum of 1000 (rounded). The rate of PAO de-
gredation depends upon what was requested (fuel n am-
munition n food) and what state the OU was in when it
made the request (engaged n moving n idle). In Fig-
ure 4, the PAO for OUs is the right-most number under
the OU icons (boxes with an X). The first three num-
bers are the levels of fuel, ammunition and food.

6.2. Results

Figure 5 shows the typical results of the demonstration
scenario. Since SU2 was “handicapped” in that it only had
one asset, compared to SU1’s nine assets, we expected that
adaptation would cause all OUs to request most of their re-
sources from OU1. In order to add an element of instability
in the environment, enemy units (diamond with an X) peri-
odically attacked OU3. Initially, AO decreased rapidly until
the ECLAIR agents learned to choose different supply units
based on the availability of resources. Within a short period,



Figure 5. The ECLAIR logistics demonstra-
tion after adaptation. OU3 learns to order re-
source from SU1 because it is more reliable.

OU2 and OU3 learned to decrease the expectations of SU2’s
reliability because it had only one asset. Also, as wellbe-
ing decreased, more exploration occurred, causing the OUs
to send their requests to SU1. Eventually, OUs almost al-
ways requested from the SUs that gave the right types of
resources in the shortest period of time. For example, Fig-
ure 5 shows OU3 requesting supplies from SU1.

In our demonstration prototype, we show that the
ECLAIR agent framework provides solutions to SRL chal-
lenge problems; agents improve the speed of command
and adapt to the changes in a demand driven network.
Speed of command is measured by the AO score. Fig-
ure 6 shows the average AO score of 30 runs for three sce-
narios based on the nine-one asset scenario described pre-
viously; Default, Explore, and Adapt. The dark gray line,
marked “Default,” shows the results of agents only request-
ing supplies from their default supply units. The black
line, marked “Explore,” shows the results of agents se-
lecting a random supply unit at an exploration rate
based on wellbeing, but not using learning results to
adapt. The white line, marked “Adapt,” shows the re-
sults of agents using learning results to adapt. In the
Default scenario, agents only used their default behav-
ior. In Explore, the agents may have randomly chosen the
best supply unit to request to, but they were not making se-
lections based on learned knowledge. The AO scores for the
Adapt scenario were considerably higher than the other sce-
narios. Default quickly bottoms out at the lowest pos-
sible score. Exploration only reaches an AO score of
around 400, while Adapt flattens out near 1000, the maxi-
mum score.

The graph in Figure 6 shows that using learning to adapt
to the environment yields a clear improvement in speed of
command. The need for fuel, ammunition, and food varied
from hour to hour in all scenarios. At the end of the Adapt

scenario, OU2 and OU3 were being supplied faster by ask-
ing a more responsive SU1 for supplies. The speed of com-
mand was improved from its initial setting when SU2 was
supplying all of the needs to both OU2 and OU3.

Our final scenario shows agent adaptation to dynamic
changes in the environment. We set up a contrived scenario
in which resource availability for supply units changed dras-
tically over time. In the scenario, OU3 sent requests to SU1
by default, however SU1 initially had no ammunition and
took several days to order more. SU2 had a stockpile of am-
munition, but it could not send assets to get more when it ran
out. In order to show that OU3 was adapting to the changes
in the environment, it should have first learned to request re-
sources from SU2, but should have later switched to SU1 af-
ter SU2 ran out of ammunition. Figure 7 indicates when (x-
axis) and to whom (y-axis) OU3 sent requests for ammuni-
tion. The vertical lines indicate events that changed the en-
vironment in the scenario. The events are as follows:

1. Begin. SU1 has no ammunition, but SU2 has 75 units
of ammunition

2. Enemy appears
3. SU1 receives 100 units of ammunition
4. SU2 runs out of ammunition and does not order more

OU3 did learn to adapt to the changes in the environment.
At first it made four requests for ammunition from its de-
fault supplier, SU1, but then learned to make requests to
SU2. After SU2 ran out of ammunition, OU3 explored and
made a request to SU1 around day six. At around day nine
OU3 learned to continue making requests to SU1, and did
so almost exclusively (except for the exploration around
day 14). This scenario shows that adaptivity occurs quickly
enough to respond to frequent changes in the environment.
For example, OU3 initially learned to request from SU2 af-
ter only four interactions with the environment, and then
re-learned to order from SU1 after another four examples.
Our goal for future work is to use learned knowledge from
other agents and the environment to speed command even
more.

7. Future Work

Our future work will extend our architecture by using
agent cooperation to share learned behaviors and aware-
ness of the environment. We will develop decision assistant
agents that make weighted recommendations to small-unit
commanders based on learned knowledge. We plan to in-
vestigate two agent research areas; coordination and shar-
ing, in order to make agents more synchronized in their be-
haviors and knowledge of the world. Not only will agents
adapt by modifying their individual behaviors, they will also
re-organize themselves or their assets to better suit the en-
vironement.



Figure 6. Average AO scores for 30 runs, over a period of 350 simulated hours. The dark gray line
shows the score of the default behavior. The black line shows the score using some random explo-
ration. The white line shows the score using adaptivity.

Figure 7. Results from a scenario depicting
several events that cause OU3 to adapt its be-
havior. OU3 learns to send request to SU1 or
SU2, depending on their resource availability

Anticipation is also important for SRL applications [24].
We will investigate the potential for agents to anticipate the
needs of other agents. For example, detecting changes in
consumption rates of operational units due to engagement
with a new force should prompt a supply unit to prepare
for delivery sooner than planned, or even cause it to recom-

mend a new configuration of suppliers to better support en-
gaged units. Currently the need for resources is determined
by operational unit agents. In the future more responsibil-
ity will be moved to supplier unit agents. We will also study
the interplay between plan and reflexive behavior, a subject
that is not well-studied in agent research.

8. Conclusion

We have developed a cognitive agent architecture that
provides the framework for Sense and Respond Logistics.
SRL requires coordination amongst agile, responsive units,
and presents an optimization problem with a moving target.
Our agent architecture advances the current state of logis-
tics applications because agents can follow the moving tar-
get by adapting to a changing environment. We presented a
logistics implementation of our architecture that shows that
adaptive agents have greatly improved behavior over agents
that do not adapt.

Our agent architecture uses cognitive models based on
Piaget’s Cognitive-Stage Theory of Development [21] and
Damasio’s Somatic Marker Hypothesis [21]. Agents take a
hybrid approach to action, using logic-based plan behavior
in normal situations, and emotionally-inspired reflex behav-
ior when they perceive internal distress. Adaptivity can ma-
nipulate plan and reflex behavior, improving agents perfor-
mance and increasing the speed of command. Our cognitive



architecture is an excellent framework for SRL because plan
behavior encourages agents representing warfighters to fol-
low strategies built from experience in the battlefield, while
reflex behavior helps the agents handle unexpected situa-
tions.

ECLAIR’s unique contributions to agent research are
the cognitively-inspired architecture that supports decision
making using plan and reflexive behavior, and our net-
centric approach to logistics. We are using adaptive agents
to tackle the critical problems summarized by the Depart-
ment of Defense [24] with an approach that is oriented to-
wards SRL. ECLAIR bridges research in adaptive agents
and cognitive architectures with the military domain that is
just beginning to acknowledge the need for adaptive sys-
tems. We are also interested in making usable tools for real-
life problems. At ATL, we have the proven capabilities to
extend our research into the real world and supply practi-
cal applications for use by warfighters in the global theater.
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