Agent Learning as A Control Problem

David G. Cooper Lockheed Martin Advanced Technology Laboratories Cherry Hill, NJ

Advanced Technology Laboratories

- 150 employees
- Innovate technologies for ready insertion into Lockheed Martin and other industry products
- 4 Laboratories
 - Advanced Concepts, Distributed Processing, Embedded Processing
 - Artificial Intelligence
 - Department of Defense
 - Basic and applied research
 - Autonomy, Human Centered Interfaces, Situation Understanding
 - Net-Centric Operations Technology
 - Contracts
 - Internal Research and Development
 - Agent Learning

LOCKHEED MARTIN

Operational Problem

Coordinated logistics among lower echelons form a complex system

Technical Challenges

Many factors to consider when changing plans

January 27, 2006

Benefits of Solving Technical Challenges

Software Agents can be used for decision support

January 27, 2006

Technical Approach to Achieve Adaptation

- People are good at adapting to change
- Apply three elements from cognitive research
 - A system that interacts with its environment
 - Mechanisms for adaptation
 - Mechanisms for stability

Technical Approach: Element 1

Put modules for interaction into a software paradigm.

January 27, 2006

Technical Approach: Element 2 Adaptation Mechanisms (Jean Piaget)

Assimilation

- Adapting the environment to world model

Accommodation

- Adapting self to environment

Equilibration

- The stability mechanism
- Finding balance between assimilation and accommodation

Technical Approach: Element 2 Example: Children and Animals

Known

Unknown

???:

Assimilation

Accommodation

Food is low so order food from SU 1

Lev.	Low	OK	OK		
	Food	Fuel	Ammo	Reliable	Prefer
SU 1	1			No data	
SU 2	2			No data	
SU 3	3			No data	

Failed to receive food; food is still low, so order food from SU 2

Lev.	Low	OK	OK		
	Food	Fuel	Ammo	Reliable	Prefer
SU 1	2			0% (0/1)	
SU 2	2			No data	
SU 3	3			No data	

Accommodate

Received food from SU 2; Accommodate

Lev.	OK	OK	OK		
	Food	Fuel	Ammo	Reliable	Prefer
SU 1	2			0% (0/1)	
SU 2	1			100% (1/1)	
SU 3	3			No data	

Accommodate

SU 2 becomes preferred supplier; fuel is low, so try SU 2

Lev.	OK	Low	ОК		
	Food	Fuel	Ammo	Reliable	Prefer
SU 1	2			0%(0/1)	
SU 2	1	x		100% (1/1)	X
SU 3	3			No data	

Assimilate

LOCKHEED MARTIN

Adding Adaptation to the Decision Model

January 27, 2006

Element 2 Re-Casts the Stability Problem

From

- How can a system be both predictable and flexible?

- To

 Stability through equilibration of assimilation and accommodation controlled by "consistent intent?"

LOCKHEED MARTIN

Technical Approach: Element 3 Stability Mechanisms

- Homeostasis according to Ashby
 - "A form of behavior is adaptive if it maintains the essential variables within physiological limits."*
- "Essential variables" or Homeostatic Variables (HVs) represent intent of the system
- Goal becomes to maximize the margin from each "physiological limit" of each "essential variable"

* W. Ross Ashby, Design For a Brain, 2nd ed. pg. 58

Technical Approach: Element 3 Stability Mechanisms • Homeostatic Variables (HVs)

- A set of ideal levels
- Decisions motivated by variables

Technical Approach: Element 3 Example: Create Consistent Intent • Example behaviors

- 1. Order fuel => increased fuel
- 2. Target Practice => decreased ammo

Adding Stability Mechanisms To The Decision Model

Damasio's Somatic Markers (*)

- Given an HV level, create a marker that links to a behavior that moves the level towards the "Good" area.
- Learning is invoked when the behavior fails to move in the intended direction.
- Behaviors have an expected impact on HVs.

Adding Stability Mechanisms To The Decision Model: Evaluating Actions

Expectation vs. observation

KB

LOCKHEED MARTI

- Role of Expectations
 - Used to choose actions
 - Used to evaluate actions
 - Used to guide adaptation
 - Can be learned from experience.

Current Status

Adaptive, Cognitive Agent Architecture

- Implements Piaget's adaptation model: assimilation, adaptation, equilibration
 - Applies Reinforcement Learning Technique
- Controls Learning with Damasio's Somatic Marker model
 - Stable in most cases
 - May have trouble with large number of HVs
- Demonstration/Experimentation on simplified Sense and Response Logistics scenario

Conclusions

- Realization of Piaget's and Damasio's theories provides competent, adaptive behavior
- Achieves general-purpose (not domain or task specific) machine learning and adaptation
- Actual Deployment will require stronger stability results

Future Work

Formalize the Stabilization Process

- Ashby Polystable system
 - Change more than one parameter if the parameters don't interact
 - Keep track of interactions
 - Keep track of what changes cause

Backup Slides

Evaluation Capability

What is Varied

- Supply Units(SUs)
 - Number of assets
- Operational Units(OUs)
 - Rates of supply use
- Geographical position
- Capacity
- Speed
- Initial Conditions

Two Perspectives

- OUs Request Supplies
- SUs Supply OUs
- Performance Factors
 - Operational Availability
 - Well-being of Agents
 - Time to Adapt to a Change

Environmental Effects

- Food consumption
- Burning fuel
- Theft
- Supplies found by unit