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ABSTRACT
The Engine for Composable Logical Agents with Intuitive Reorganization
(ECLAIR) is a cognitive agent architecture that allows an agent to quickly
adapt its behavior to new environments. ECLAIR addresses two problems in
agent learning: generalizing the process of adaptation and detecting when
adaptation is required. ECLAIR incorporates the main mechanisms from
Piaget’s Cognitive-Stage Theory of Development [10], and it uses concepts
from Damasio’s Somatic Marker Hypothesis [4] for discovery of what should
be learned. ECLAIR has modules for stimuli, awareness, plan behavior, reflex
behavior, control/decision making, and adaptivity. ECLAIR agents take a
hybrid approach to action. In normal situations they act logically, using plans,
when there is a known strategy to accomplish a task. However, when quick
reaction is needed, motivation for action is intuitive or emotional. The agent
fires reflexes triggered by changes in the agent's perception of personal well
being. Adaptive learning extends both cognitive and emotional behavior in our
architecture. We demonstrated the cognitive architecture and reflexive
adaptation using a simulation for network-centric warfare logistics.

1.  COGNITIVE ARCHITECTURES
Researchers have strived to develop cognitive architectures since the 1980s. The

main premise of these types of architectures is to emulate the human, how a person
makes decisions, represents information, and learns. The two most widely known
cognitive architectures with a psychological basis are SOAR [9] and ACT-R [1]. Both are
hypotheses for answering Newell’s concept of a United Theory of Cognition [12]. Newell
saw that in a person, there are many interacting components that must be integrated into a
single comprehensive system, and believed that the single system is the source of all
behavior. Thus, the goal of a cognitive architecture is to have one system that gives
purpose to the many components that make up a thinking person.

ACT-R is a cognitive architecture designed as an integration of components
discovered in psychology research. This model is primarily meant to accurately simulate
human behavior. Given a specific cognitive theory, ACT-R can be used to model the
components of the theory. Once the model has been created, experiments can be made
that get results very similar to human experimental results. In addition, the model can be
used to extend previous theories by creating a novel experiment for the model. ACT-R
also has a set of modules that represent different functional aspects of the brain. The
modules interact when each module exposes part of its activity into a public buffer. The



central production system uses the data in the buffers for its processing. ACT-R has
primarily been used for psychological research [1].

SOAR is a cognitive architecture focused on the functional requirements of human
level intelligence. SOAR attempts to recreate goal driven behavior, continuous learning
from experience, and real time cognition. The goal is to have a system where memory
can be directly used for action. A production system is at the heart of the architecture.
The decision cycle has seven steps: Input, State Elaboration, Propose Operator, Compare
Operators, Select Operator, Apply Operator, and Output [11]. SOAR’s mechanism for
learning, called “chunking,” has proven to cause unexpected results and experiments
have been done to replace the chunking mechanism by reinforcement learning [11].

The paper is organized as follows: Section 2 describes the theoretical background;
Section 3 is the architecture description; Section 4 talks about adaptivity in detail; Section
5 describes the logistics application, and Section 6 concludes.

2.  MOTIVATION AND THEORETICAL BACKGROUND FOR ECLAIR
The Engine for Composable Logical Agents with Intuitive Reorganization

(ECLAIR) was designed as a cognitive agent architecture amenable to adaptivity and
learning. Agent adaptivity and learning are important for real world domains, where the
situation in the environment dynamically changes and the agents have to adapt quickly.
One domain of special interest is Sense and Respond Logistics (SRL). SRL aims to
deliver precise, agile support through adaptive and responsive demand and support
networks [13]. Automation technologies supporting SRL should respond to events that
occur, as well as aid in the perception and anticipation of short-term needs. The cognitive
agents working in NCL domains must adapt by reorganizing themselves to suit the
environment, or by modifying their behavior to improve their effectiveness.

ECLAIR is a cognitive model based on developmental cognitive psychology
research and neuropsychological research. Though many developmental theories
contributed to the ECLAIR model, the two most prominent are Piaget’s adaptation theory
[10], and Damasio’s Somatic Marker Hypothesis [4]. Piaget's adaptation theory consists
of three main concepts: Assimilation, Accommodation, and Equilibration. Assimilation
processes unfamiliar input in the same way that one would process the most similar
familiar input. Accommodation changes the processes to deal with unfamiliar input.
Equilibration balances the aforementioned processes. The Somatic Marker Hypothesis
stems from Damasio’s belief that gut feelings are a basis for decisions in addition to
reasoning, which is often thought of as the only basis for decision. Damasio defines a
somatic marker as a trigger that recalls feelings related to previously made decisions. The
decision is made based on the best expected feeling given the available actions for the
current circumstance. Each memory of feelings becomes a somatic marker that is used as
a mapping from circumstance to action.

ECLAIR agents contain modules for stimuli, awareness, plan behavior, reflex
behavior, control/decision making, and adaptivity. The interaction between awareness,
behavior and adaptivity allows agents to modify their behavior based on their perception
of world and self-states. Self-states are represented by homeostatic vectors (HVs), where
the comfortable level for the agent is a range, not a threshold. Agent well being is an
emotional state that is computed as a function of the agent’s HVs.



3.  ECLAIR ARCHITECTURE
The main elements of ECLAIR architecture (Fig. 1) include the following modules:

Stimulus, Awareness, Reflex Behavior, Plan Behavior, Adaptivity, and Action/Decision.
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Fig. 1.  ECLAIR Architecture.
The Stimulus Module deals with the perception of the world by the agent. There are

two types of perception: external and internal. For a living being, external perception is in
the form of sensed sound, smell, sight, taste, and touch, while internal perception may
include hunger, pain, and comfort. The Stimulus Module tries to match the input
(perception) to a known stimulus. If it is successful, the agent has dealt with this type of
input previously, and knows how to respond (has an appropriate plan or reflex). If the
input remains unmatched to a known stimulus, the agent does not know how to respond,
as it did not previously encounter and suitably solve a similar problem. In this case,
depending on the Awareness Module output, the agent will have a choice of performing
assimilation or accommodation (described in detail in the Adaptivity Module).

The Awareness Module maintains a representation of what the agent is aware of in
the world and of self. It performs: 1) maintenance of the state of the world and self, based
on inputs; 2) maintenance of the predicted state of the world and self, based on the
current state of the world, and the actions taken by self; and 3) mapping of expectations
to observations. The awareness module creates an expectation when an action is taken,
indicating what it expects to happen as a result of the action. Observations are stimuli that
have been caused by an agent’s previous action. Each expectation has a corresponding
observation that indicates the actual result. Disconnects between expectation and
observation may trigger behavioral adaptation in the form of accommodation.

Homeostatic vectors, representing current levels for different features of the agent,
are part of the agent’s self-state. With each HV there is a range of values associated
representing the ideal values for each of the HVs. As each HV departs from its ideal
range, the agent’s overall well being decreases. Well being is an aggregate value that
describes the agent’s happiness. When the value of well being is low, the agent, similarly
to humans, is frustrated. In a logistic application, HVs can be related to the agent’s levels
of fuel, ammunition, food, etc.



There are two types of behaviors that an ECLAIR agent can perform: a reflex or a
plan. The Reflex Behavior Module is responsible for the first type of behavior, while the
Plan Behavior Module is responsible for the second type. Agent reflexes are similar to
human reflexes: they are simple actions that the agent performs. An example of a human
reflex is to blink the eye when bright light suddenly appears. In case of a military logistic
application, an agent’s reflex can be to ask for ammunition when the agent has little left.
Agent reflexes, like human reflexes, can be inhibited. Inhibition is handled by the
Decision Module discussed later. Each reflex is registered with the Awareness Module.
When the right stimulus comes in (i.e. matches the stimulus needed to fire a given reflex)
it is passed to the Reflex Module, and the Reflex Module fires the reflex if it has not been
inhibited. In addition, once a reflex is fired, it inhibits itself for a certain period of time so
that the effect of the reflex can be observed.

The Plan Behavior Module is responsible for agent plans (also called workflows). A
workflow is a list of tasks linked by conditional or unconditional paths. Tasks on an
unconditional path are always executed, while tasks on a conditional path are only
executed when the condition is true. An example of agent’s workflow is shown in Fig. 2.
The Plan Behavior Module can have multiple workflows available to the agent. With
multiple workflows an agent can choose a different plan when the current workflow is at
an impasse. If there is a higher priority workflow, it can interrupt the current workflow.

Both reflex and plan behaviors have conditions that need to be fulfilled for the
behavior to be initiated. These conditions are in the form of a stimulus. When the
Awareness Module receives a stimulus, it matches the stimulus with appropriate reflex
and plan behaviors that have the stimulus type as a condition (e.g. a feeling of hunger
may initiate a search for food). In addition, a stimulus may update the self and world
representations (e.g. bumping into a wall may update the world representation that
previously indicated a clear path).
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Fig. 2.  Example of an ECLAIR agent’s plan (workflow).
The Decision Module decides upon the agent’s next behavior and allows for some

flexibility of the agent. As mentioned previously, the behavior is either handled by a
reflex, or by part of a plan. If a reflex is fired, the activity within it will be completed. If a
plan is enacted, the plan will continue unless a higher priority plan is started. Plans result
in execution of tasks that can contain actions. For a human, examples of action are
speaking, moving, or manipulating. For agents, actions may be sending data, retrieving
data, computing, sending control commands, ordering supplies, etc. Reflex inhibitions are
handled in the Decision Module: an inhibition is created when there is a need for a certain
action to be suppressed. The inhibition is removed once this requirement no longer exists.
An example is an agent firing a reflex to order food whenever it is low on food. The
reflex must be inhibited for a certain time after it is fired, or the agent would constantly
fire the same reflex, resulting in ordering huge amounts of food.



The Adaptivity Module is where all of the adaptation/learning takes place. An agent
can be created without the adaptivity module. This agent would act predictably, but
would not adapt even if its actions failed to accomplish the desired task. This type of
agent would have only a choice of predefined reflexes and plans, as well as predefined
conditions indicating when to enact a given reflex or plan. Most deployed agent systems
lack the adaptivity/learning capability.

4.  ADAPTIVITY IN ECLAIR
4.1 INTRODUCTION

Goal Based Adaptivity happens in parallel to the other agent activities. It allows the
agent to respond quickly to what is happening in the environment (i.e. make fast
decisions) but at the same time to learn and improve its behavior. There are three types of
adaptivity in our agents: Emotion-Based, Cognitive-Based, and a New Behavior
Generator. Emotion-Based Adaptivity performs short term learning and is triggered by
the agent’s emotions, such as frustration. Emotional actions are less explicative than
cognitive ones, but they can extend prediction with innate sensibility and they have faster
reaction time [5]. This type of adaptivity is fully implemented in our system and is
described in Section 4.2. Cognitive Based Adaptivity performs long term learning and the
agent uses reasoning to learn and improve its behavior. The agent reasons on many
levels, and uses explicit rule knowledge. Cognitive adaptivity makes more accurate
predictions based on rules of causality and complements the Emotion-Based Adaptivity
similarly to Asynchronous Learning by Emotion and Cognition system [5]. Cognitive
adaptivity is currently a placeholder in our architecture that has not been implemented
yet. The New Behavior Generator is a mechanism that causes a completely new behavior
to be learned: this can be a reflex or a plan. The mechanism that we envision for this
purpose is Genetic Programming- the same methodology that is described in Section 4.3
for Plan Adaptivity. Again, this part awaits a future implementation.

4.2  EMOTION-BASED ADAPTIVITY
Emotion-Based Adaptivity is triggered by the “emotions” of the agent. In nature,

emotions are pleasant or unpleasant feelings that interrupt current behavior. In ECLAIR
the short cut for emotions is the agent well being. When the agent’s well being decreases
(as determined by the Awareness Module), the agent becomes frustrated, similarly to
what happens in people. For example, this could occur if an agent experiences a stimulus
with no corresponding response. In this case, the stimulus is unmatched and the agent has
a choice of performing assimilation or accommodation. Assimilation is performed when
the current stimulus is similar to another stimulus for which the agent has a previously
used (known) response, and the known response is executed. Accommodation can take
place when the current stimulus is very different from stimuli that the agent knows how
to respond to. Accommodation implies that the agent has to modify a known behavior,
and perform this new behavior to suit the new stimulus. The successful accommodation
will be recognized by the agent through its improved well being. The structure of the
Goal Based Adaptivity Module allows for different learning mechanisms to be used. The
plan adaptivity and reflex adaptivity described below are examples of learning
mechanisms. Both mechanisms perform accommodation, i.e., change a known agent
behavior into a new, better behavior.



4.3  PLAN ADAPTIVITY
The plan adaptivity mechanism was designed for agents with a workflow similar to

Fig. 2. Our approach to plan adaptivity is named Evolutionary Platform for Agent
Learning (EPAL) [3]. Genetic Programming (GP) invented by John Koza [8] constitutes
the basis for adaptivity in EPAL. Using the principles of Darwinian evolution, GP
performs program synthesis by genetically breeding a population of computer programs.
The basic operators of reproduction, crossover and mutation operate on individuals in the
population and a fitness function describes the goodness of an individual. In GP each
individual program is represented as a tree.

In EPAL we represent agent plans in a GP tree form and GP operators work on
agents' genetic material (i.e., GP trees) to generate new agents that have learned to
overcome certain problems in their environment. As agents execute in the environment
their fitness is collected. The value of fitness guides the evolutionary learning process.
This method is a general method that can generate completely new agent plans as well as
related plans, but with new parameters. Augmenting an agent's plan is synonymous with
changing the agent’s behavior, thus the method can be used for generating new behaviors
in addition to modifying parameters. Our ECLAIR software agents are more complicated
than the small software programs that GP usually evolves. In order to evolve meaningful
agents in a realistic time frame our representation of GP agents needs to be at a higher
level than simple Java instructions and their parameters. EPAL’s main GP building
blocks are the individual tasks that compose a workflow. We have not used the EPAL
agent plan adaptivity in a logistics scenario, although we are currently integrating EPAL
into ECLAIR’s plan adaptivity module. The interested reader can find the details of GP-
based adaptivity in [2] and [3].

4.4  REFLEX ADAPTIVITY
A reflex in ECLAIR is composed of a stimulus, an activity, and a set of parameters

for the activity. We use an approach based on Reinforcement Learning (RL) [7, 13] to
learn the best parameters to use in an activity given the stimulus. RL is based on two
major principles: receiving immediate reinforcement for taking actions in an environment
given the state of the environment, and generating an overall value for a state-action
mapping using delayed reward. Our reinforcement approach calculates the overall values
of stimulus-activity-parameter mappings from the reward received as the results of
activities are observed. The innovation in our technique is not the technical aspects of our
RL algorithm, but the use of cognitive elements from the architecture, such as perception
and expectation, as the foundation for reward.

A typical RL problem is composed of a set of discrete states and a set of discrete
actions. The high-level goal is to learn the best mapping between state and action, or the
best policy. In ECLAIR, a state is composed of a stimulus and an activity. Stimuli in the
logistics scenarios include internal states (represented as HVs) such as Low_Fuel or
Very_Low_Food. Given these internal states, our agents will do an activity; for example,
Order_Fuel and Order_Food, respectively. The parameters of the activity are variables
and constitute our learning problem. Parameters include who to order from, how much to
order, and the order priority. Our policies are composed of {stimulus-activity}-
{parameter set} mappings, corresponding to RL’s state-action mappings. The
reinforcement learner determines which parameter set to use given a stimulus-activity
pair. Reinforcement is computed by comparing the expectation of the activity with the
observed results. This was a significant challenge in our approach as the observations
from an activity are not immediate and may not be seen until several intermediate tasks



are completed. In our logistics simulation, the expectation from Order_Fuel is that an
agent will receive the amount of Fuel it ordered within a certain period of time. In order
for an agent to receive a resource, a supplying agent must receive the order, and then
must send out an asset to complete the order, assuming it has the asset and resource
available. The whole operation could potentially take several simulated days, even with a
relatively fast chain of command. If the supplying agent does not have an available asset
or the requested resource, the order may never be filled.

Overall value for a policy is the summation of its reinforcement over time. When
selecting a policy to use for a given state, usually the policy with the highest overall value
is used. However, exploration will occur at a rate dependent on the well being of the
agent. If well being is high, then the agent is doing well with the default or learned
behaviors and will decrease the exploration rate. However, if well being is low, then the
agent will increase the rate so that the agent explores more often and perhaps discovers
better policies to improve well being. Balancing exploration with exploitation is a
difficult problem in RL [14]. Our solution incorporates knowledge about the internal
emotional state to compute an exploration rate that is well suited at a given moment.

5.  LOGISTICS APPLICATION
5.1  SIMULATION

We created a demonstration that shows how ECLAIR agent adaptivity works in a
Sense and Respond Logistics (SRL) scenario. The scenario demonstrates ECLAIR’s
ability to react appropriately in a dynamic environment. In our scenario, each operational
unit (OU) and each supply unit (SU) is represented by an ECLAIR agent. As an OU, the
ECLAIR agent monitors its homeostatic vectors that indicate fuel, ammunition, and food
amounts. As the OU consumes its resources, it becomes increasingly unhappy (low well
being) and it requests a re-supply from a particular SU. OUs set their expectations based
on how much of a resource they requested and how long they expect to wait for the
request to be fulfilled. When supplied, the OU agent observes how much of the resource
it received and how long it had to wait. The expectations and observations of an OU
influence its decision to continue using a particular SU or to choose a new one.

We tested ECLAIR agents in a scenario with three OUs and two SUs. One supply
unit, SU1 has nine assets (i.e. helicopters or trucks to transport supplies) and the other,
SU2 has only one. OU1, OU2, and OU3 are initially assigned a default supply unit to
order resources from: OU1 requests resources from SU1; OU2 and OU3 request
resources from SU2. The demonstration uses the concept of Operational Availability
(Ao) as a metric in determining whether adaptation is truly occurring.

Operational Availability is a metric used by the military to determine how prepared
a unit is to handle its commands.  In our demonstration prototype, we model Ao as a
function of a unit’s outstanding resource needs, assuming that for a logistics scenario, the
factor of interest is a unit’s resource level. Ao can be thought of as a military version of
well being, however in our scenarios, the Ao score was used as an externally observed
evaluation of the scenario whereas well being was used internally by the agents to
evaluate their own behavior.

Ao is modeled as a function: Ao = MAX-sum(Pi|i = 1..n), where MAX is a perfect
Ao score, i is a particular unit, n is the number of units, and Pi is the Personal Ao (pAo)
of each operating unit. The pAo of each operating unit is calculated on the basis of
outstanding supply requests by each unit i. pAo is modeled as a function Pi = sum(Rj|j =
1..n) where Rj is the value of an outstanding order request j, and n is the number of



requests outstanding. Rj is determined based on the state of the operational unit i:
(engaged, moving, or idle) as well as the type of request made (fuel, ammunition, food),
and how long ago the request was made. Certain states and request types have a higher
priority than others and yield a higher R value. Particularly, a request for fuel while the
unit is engaged yields the highest value. R  will also increase over time at a different rate
for each request type, indicating that as time passes it becomes more of a concern to be
low on higher priority resources.

5.2  RESULTS
In our scenario, SU2 was “handicapped” with only one asset, compared to SU1’s

nine assets. In order to add an additional element of instability in the environment, pop-
up enemy units periodically attacked OU3, causing a sudden increase in the need for
ammunition. In most runs of this scenario, Ao initially decreased rapidly until the
ECLAIR agents learned to choose different supply units based on the availability of
resources. Within a short period, OU2 and OU3 learned to decrease the expectations of
SU2's reliability because it was not delivering resources at a satisfactory level. Also, as
well being decreased, more exploration occurred, causing the OUs to send their requests
to SU1. Eventually, OUs almost always requested from the SUs that supplied the right
types of resources in the shortest period of time.

Fig. 3 shows the average Ao score of 30 runs of our scenario for three settings
Default, Explore, and Adapt. The dark gray line, marked “Default,'” shows the results of
agents only requesting supplies from their default supply units i.e. agents that do not
adapt. The black line, marked “Explore,” shows the results of agents selecting a random
supply unit whenever their well being is low, but not using the results to learn from
whom to request supplies. The white line, marked “Adapt,” shows the results of agents
using reflex adaptivity i.e., learning to request supplies from the SU that provided them in
a satisfactory fashion.

Fig. 3. Average Ao scores for 30 runs, over a period of 350 simulated hours.
Our results indicate that learning to adapt to the environment yields a clear

improvement in Ao. The need for fuel, ammunition, and food varied from hour to hour in
all scenarios. At the end of the Adapt scenario, OU2 and OU3 were being supplied faster
by asking the more responsive SU1 for supplies. The Ao was improved from its initial
setting when SU2 was supplying for all of the needs both OU2 and OU3. Additional
scenarios that show adaptation to several dynamic changes in the environment are
described in [6].



6.  CONCLUSIONS
ECLAIR, the agent architecture we developed, realizes a cognitive model based on

Piaget’s Cognitive-Stage Theory of Development and Damasio's Somatic Marker
Hypothesis. Agents take a hybrid approach to action, using plan-based behavior in
normal situations, and emotionally inspired reflex behavior when they perceive internal
distress. Adaptivity can manipulate plan and reflex behavior, improving agents’
performance and adapting their response to changes in their environment. Using Goal
Based Adaptivity, the agents learn how to better operate in a dynamic environment.

In the logistics scenario where we tested the ECLAIR agents, we demonstrated that
adaptive agents greatly improve behavior over agents that do not adapt. In our
demonstration, we show that the ECLAIR agent framework provides solutions to SRL
challenge problems; agents improve the Ao score and adapt to the changes in a demand
driven network. Most importantly, the adaptivity that enables this improvement is task
and domain independent.
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