
ADVANCES IN EVOLUTIONARY AGENT LEARNING

ANNA L. BUCZAK, DAVID G. COOPER, MARTIN O. HOFMANN
Lockheed Martin Advanced Technology Laboratories
Cherry Hill, New Jersey
{abuczak, dcooper, mhofmann}@atl.lmco.com

ABSTRACT
This paper describes a novel methodology for software agent learning.
Evolutionary Platform for Agent Learning (EPAL) creates both subtle and
drastic changes to agent behavior. Subtle changes arise from learning task
parameters. Drastic changes emerge from learning improved workflows
containing new programming constructs and tasks. EPAL presents a general
approach to agent learning, based on an extension to Genetic Programming that
we developed. This approach is suitable for learning by any agent whose
behavior can be represented as a workflow that can be further decomposed into
building blocks, such as operators, tasks, and parameters. This paper describes
a real-world problem that our agents learned to solve that is similar to problems
encountered in Navy Fleet Battle Experiment-Juliet. Several sets of results are
presented, showing increasing learning capabilities of our agents.

1. INTELLIGENT AGENTS AND LEARNING
Learning plays a fundamental role in most human activities. Humans learn from their
experiences, both successes and mistakes. Babies learn to walk and talk, adults learn
foreign languages, new skills and concepts. Learning seems to be the fundamental
property that allows humans to adapt to changes in the environment and to be successful.
The skill of learning is of dynamic nature in humans who continuously acquire and
modify representations of the world [Sun, 2001]. On the other hand, artificial systems
such as software agents are usually static. For software agents to work properly, humans
need to envision all contingencies and code them at the agent development time. Most
agents react the same way to similar external stimuli, even when the previous reaction
failed. Our goal is for the agent to learn different behavior in response to those stimuli. If
software agents could “just” learn from their successes and mistakes, they would be more
rapidly deployable and agent systems would have a longer life span. However developing
a general learning method for software agents is a difficult proposition. Several attempts
have been made in the past such as “conscious learning” mechanism [Ramamurthy,
1998], ABLE agents [Bigus, 2002], layered learning approach [Stone, 1998]. Our method
differs from the ones proposed in the literature since it is capable of learning completely
new agent behaviors by using Genetic Programming.

2. EXTENDABLE MOBILE AGENT ARCHITECTURE
Lockheed Martin Advanced Technology Laboratories (ATL) developed the Extendable
Mobile Agent Architecture (EMAA). EMAA is used in about two dozen projects
covering a full range of intelligent systems, including information management for time-
sensitive strike [Hofmann, 2001], situation awareness for small military units, and
executing user requests entered via spoken language dialogue. Starting with the Domain
Adaptive Information System, experimentation with prototypes in military exercises has

guided our research and development towards the adaptable EMAA architecture. EMAA
was used in the U.S. Navy Fleet Battle Experiment (FBE) series as a human aiding tool.
From these experiments, an Interoperable Intelligent Agent Toolkit (I2AT) was created
under DARPA Control of Agent Based Systems (CoABS) funding to allow people to
construct agent systems without coding the agents from scratch, but by generating a
workflow of tasks and parameters in a graphical fashion.

EMAA agents are designed with a workflow model for agent construction. An
EMAA agent’s workflow (Fig. 1) is a list of tasks, linked by execution paths that can be
conditional or unconditional. Each task can take a certain number of task dependant para-
meters. The workflow architecture enables a new approach to agent development called
agent composition, characterized by
configuring and assembling ele-
mentary agent tasks into work flows.
Typical tasks include queries to
relational databases, retrieval of
content from Web pages, reading and
sending e-mail, etc. Key features have
been added to EMAA that support
agent learning. The goal of EMAA’s
new learning capability is allowing
agents to adapt to the environment in
which they operate.

No

Yes

Start

Wait Send Reports

Is Report in GeoBox

Send Report

Plot Report

Get Latest Report

Fig. 1. Example of an EMAA Agent Workflow.

3. EVOLUTIONARY PLATFORM FOR AGENT LEARNING
Our approach to agent learning is based on Genetic Programming (GP). John Koza
invented GP as a means of program synthesis by genetically breeding a population of
computer programs using the principles of Darwinian evolution [Koza, 1993]. The basic
operators of reproduction, crossover and mutation operate on individuals in the
population and a fitness function describes how good a given individual is. In GP each
individual is represented as a tree. In our approach (Fig. 2) GP evolves an agent
workflow instead of directly evolving a computer program. The first step is to represent
agent workflows in a GP tree form (these workflows are used in the initial population).
GP individuals are translated from a tree format into a workflow, using their jar file
descriptions from I2AT toolkit. The Activity Graph is then used to instantiate a
composable agent, which is injected into the simulated system. Fitness is collected while
the agent is run in the simulated environment.

EMAA Agent
Workflows

Simulated
System

Representation

Evolutionary
Computation

Most Fit
Agent

To Real
System

Jar
File

Agent Workflow

Composable
Agent Object

Fitness
Function

No

Yes

Start

Wait Send Reports

Is Report in GeoBox

Send Report

Plot Report

Get Latest Report

Translation

Fig. 2. Evolutionary Platform for Agent Learning.

GP operators work on agents’ genetic material to generate new agents that have
learned to overcome certain problems in their environment. Once the agents have learned,
the most fit are injected into the real system and take the place of their parents who did
not know how to overcome the problems. The method proposed is a general method that
can generate completely new agent workflows, as well as related workflows but with new
parameters. Augmenting an agent’s workflow is synonymous with changing the agent’s
behavior.

In order to use GP for agent learning, several extensions to standard GP had to be
developed. These extensions include: a novel GP tree representation that instead of two
types of nodes has three node types (operators, tasks, task parameters), and restricted
crossover and mutation operators that are guaranteed to produce legal offspring(s) from
legal parent(s). The special mutation operators introduced include parameter mutation,
task mutation, and operator mutation. The details of the representation and the new
operators are described in our previous publication [Buczak, 2003].

Our GP implementation is based on Evolutionary Computation in Java (ECJ). ECJ
[ECJ] is a flexible genetic algorithm and genetic programming freeware. Its source code
is readily available which allowed us to make modifications necessary for agent learning.

4. FLEET BATTLE EXPERIMENTS: A REAL WORLD LEARNING SCENARIO
The scenario that we are using to demonstrate our agents’ learning capabilities is similar
to a real problem encountered in Fleet Battle Experiment-Juliet (FBE-J). In our scenario
agents transmit vehicles’ track information over a network and plot all the reports. Those
track reports are coming from two vehicles: a fast vehicle moving at 100 knots and a slow
vehicle moving at 10 knots. As message arrival rates increase, the network bandwidth
becomes insufficient to transmit all messages, message queues grow and delivery delays
grow. A solution to the problem encountered, suggested by a SPAWAR expert, was to
exploit the differences in message urgency, i.e. match the rate of sending track updates to
the urgency of the message. This typically means that slow moving tracks can be sent less
frequently than fast moving tracks. Another possible solution would be to reduce the
scope of the updates i.e. send updates in a smaller area of interest (smaller GeoBox).

The overarching goal for agents is to improve the network latency. One way agents
can achieve this goal is to discriminate between fast and slow moving vehicles and to
skip a number of slow reports. The appropriate ratio for filtering is proportionate to the
ratio of the vehicle speeds (1:10). We make discrimination and filtering tasks available
for EPAL with the filtering task parameterized by the number of messages to skip. We
also make a GeoBox task available so that agents can choose a second way of filtering.

5. PARAMETER LEARNING

5.1 Experiment Description
The goal of the first EPAL test was to show parameter learning. This is a simpler form of
learning where all agents in the initial population have the right workflow but none of
them has the right task parameters. As such, the goal is to maximize the agent’s fitness by
adjusting the task parameters without changing the agent’s workflow. In the parameter
learning only parameter mutation was used (with probability 100%).

An important part of GP is the fitness of an individual. Our ultimate goal is to make
agents learn everything, similarly to what humans do. Consequently we do not want to
give too much guidance to the GP individuals. The fitness criteria we used to evaluate the

agents during learning: all fast reports should be displayed; and, slow reports should be
displayed at the ratio between the average speed of the slow reports and the speed of the
fast reports. This fitness is collected when the agent is executed, counting the number of
slow and fast reports displayed. This is done realistically, and when the network slows
down the number of fast and slow reports read and displayed by the agent changes.

In the experiments three experimental settings were varied: type of selection,
maximum number of mutations per individual, and existence/absence of user guidance.
The type of selection refers to the tournament or roulette wheel selection for choosing GP
individuals for the next generation. The maximum number of mutations per individual
specifies the number of times mutation will be called per individual (2 or 3). There is a
100% probability of the first parameter mutation, a 50% probability that there is a second
mutation, and (in the case of 3 mutations) a 25% probability that there is a third mutation.

The existence/absence of user guidance specifies whether each parameter can
undergo mutation (no guidance - undirected) or specifies which parameters can be
mutated (user guidance - directed). In order to better explain it, let’s look at Fig. 3 where
the circles around the parameters indicate the way they can be mutated during learning.
In case of undirected experiment, all the parameters in any type of circle can be mutated.
In case of user directed experiment, only the parameters that are in solid line circles can
undergo mutation. Since during mutation a new value is chosen at random from a set of
legal values for a given parameter, there is always a non-zero probability that the same
value will be chosen i.e. the parameter will not change (for most of the parameters this
probability is very low).

For Parameter Learning we performed four sets of experiments. The first experiment
uses tournament selection, a maximum of 2 mutations per agent, and no user guidance.
The second experiment uses tournament selection, a maximum of 3 mutations per agent,
and no user guidance. The third experiment uses tournament selection, a maximum of 2

- Operator

- Task

- Parameter

- Condition

Key:

GNR

Loop

If

INR

IHP

IGB If

If

17

Plot Noop

141400

S1

INR

If

17

Plot Noop

Noop

Fig. 3. The tree of the initial agent in parameter learning. The tree is read from
the top down and left to right. GNR = Get Next Report, IGB = Is in GeoBox, IHP = Is

High Priority, INR = Is Nth Report. In this case:
while (getNextReportFrom (“Sensor 1”) {
GeoBox geoBox = new GeoBox(0,0,14,14);
if (geoBox.isInside(report) { if (isHighPriority(report)) {
 fastCounter++;if((fastCounter modulo 17) == 0) {Plot(report);}
 } else { // report is low priority
 slowCounter++; if((slowCounter modulo 17) == 0) {Plot(report);}}}}

mutations per agent, and uses guidance. The fourth experiment performs roulette wheel
selection, a maximum of 2 mutations per agent, and uses guidance. Each experiment was
repeated several times (at least 32), and minimum, maximum, and mean generation
number for finding the best agent were recorded. All the runs used a population of 50 GP
trees. In the experiments the filtering values (under INR node on Fig. 3) are integers that
can range from 1 to 100. The latitude length and longitude length (under IGB node) are
rational numbers from 1.0 to 20.0, and all other parameters can assume only one value.

5.2 Results
Table 1 shows the results of the four experiments described in the previous section.
EPAL was able to find the best agent in all the runs, regardless of the number of
mutations used, type of selection, and whether user direction was given. The best results
were obtained for experiment 3; on average only 11.03 generations were needed to find
the optimal agent, and the maximum number of generations needed was the smallest of
all experiments (32). This experiment uses user direction. User directed experiments (3
and 4) give better results than the undirected experiments—the reason being that the
search space is smaller since only 2 parameters can be mutated instead of 7. A very large
improvement occurs when the maximum of 3 mutations is used instead of the maximum
of 2 (experiment 2 vs. experiment 1): on average 14.35 generations are needed, instead of
24.76. Experiment 2 results were very close to experiment 4 results, even though the
search space was so much larger. This shows the power of performing more mutations on
the agent. The best agent found in parameter learning experiments has the same workflow
as on Fig. 3 but the parameters of two INR tasks are set to 1 and 10, thus it performs the
prefect filtering.

Table 1. The results for parameter learning.
Experiment 1 Experiment 2 Experiment 3 Experiment 4

Ave number generations 24.76 14.35 11.03 13.94
Std deviation 4.99 1.044 0.59 0.55
Number runs 33 66 106 32
% runs best agent found 100% 100% 100% 100%
Min number generations 6 1 1 2
Max number generations 96 44 32 35

6. WORKFLOW LEARNING

6.1 Experiment Description
Workflow learning is a more difficult form of learning, since the agents do not have the
right workflow, or the right parameters. When performing this type of learning, EPAL
needs to generate new elements in the workflows, add new tasks and programming
constructs, remove other tasks and programming constructs, and adjust the task para-
meters. Hence, workflow learning generates new agent behaviors. For this experiment the
probabilities of different operations were as follows: reproduction - 0.25, crossover - 0.1,
parameter mutation - 0.2, task mutation - 0.4 and operator mutation - 0.05. The fitness
function is the same as in case of parameter learning.

In FBE-J, the agents had the workflow shown in Fig. 4. Those agents were getting
reports from a sensor, and sending them if those reports fell inside a Geo Box. They did
not perform any filtering of reports based on priority.

We used a population of 50 GP individuals with 50% of initial population with
random workflows and 50% with skeleton workflows as the one on Fig. 4. None of the

- Operator

- Task

- Parameter

- Condition

Key:

Loop

GNR If

IGB Plot Noop

0 0 2 2

S1

Figure 4. Best agent in generation 0 of workflow
learning experiments. GNR = Get Next Report, IGB = In

GeoBox:
while (getNextReportFrom (“Sensor 1”) {
geoBox = new GeoBox(0,0,2,2);
if (geoBox.isInside(report) {Plot(report);} }

skeleton agents perform the
filtering needed to satisfy
the requirements. In order to
be a fit agent, slow and fast
re-ports need to be differen-
tiated, and the slow reports
need to be filtered. The
tasks needed for this are “Is
High Priority” task and “Is
Nth Report” task.

6.2 Experiment 1 Results
In our first experiment, the
input was very regular: fast
and slow reports were al-
ways interleaved (fast, slow,
fast, etc.) and the two ve-
hicles’ x, y positions stayed
the same during the tests.

This experiment was run about 10 times, and the “best agent” was found on average in 84
generations. EPAL found many solutions that exploited the ordering of the slow and fast
reports, an example is shown in Fig. 5. In the lower right part of the tree, the check for
the 18th report (INR) is outside of checking if the report is high priority (IHP). This
means that the agent is filtering every 18th report, and if the reports are interleaved, it is
equivalent to plotting every 9th of slow reports (ratio 1:9). However should the reports
come in a different order, the filtering done by the agent won’t be acceptable. This means
that the agent is taking advantage of the interleaved nature of fast and slow reports. To
counter these effects, we designed a second experiment.

6.3 Experiment 2 Results
Our goal in the second experiment was to make the learning conditions for agents more

- Operator

- Task

- Parameter

- Condition

Key:

Loop

GNR

S1
If

ES

IHP Plot

Plot

Noop Noop

If

If

IHP

INR

Noop18

Figure 5. Best agent from one run of Experiment 1. GNR = Get Next Report, IGB = In
GeoBox, IHP = Is High Priority, INR = Is Nth Report:

while (getNextReportFrom (“Sensor 1”) {
if (isHighPriority(report)) {Plot(report);} counter++;
if((counter modulo 18) == 0) {if (not(isHighPriority(report))) {Plot(report);}} }

realistic. The first real-world modification was that slow and fast reports could come in
any order, with the probability of getting a slow or a fast report set at 0.5. The second
modification was for the values in sensor reports themselves (describing x, y positions)
not to be constants but to be provided by a sensor model interfacing with a Joint Semi
Automated Forces (JSAF) simulator.

These changes led to very noisy fitness values, meaning that the fitness would
significantly change for the same agent from generation to generation (depending on the
order of slow and fast reports that the agent was scored on). To alleviate this problem, we
modified EPAL to evaluate each agent three times on three random sequences of reports
and additionally to compute an average fitness value based on all evaluations that the
agent performed so far. If an agent survives many generations, the average fitness would
be based on more evaluations, and would be less likely to have a good value due to
idiosyncrasies with one set of sensor inputs. By using the realistic sensor data, the exact
ratio of 10:100 knots in the speed of the slow to fast targets did not hold anymore.
Moreover this ratio was not constant, varying between 9 and 10, and it was rarely an
integer. Those changes made the learning problem much more difficult, albeit realistic.

EPAL learning was conducted for 400 generations. The experiment was run four
times due to the length of each run. One run is discussed here. In generation 0 the best
agent had the workflow of Fig. 4. Small improvements are made in consecutive
generations. At around generation 117 EPAL creates an agent with the right workflow,
but the filtering ratio is 1:7 instead of 1 to 9 or 10. By generation 337, the best agent in
the run was found (Fig. 6) with a ratio of 1:8. It performs a loop in which it gets the next
sensor report (GNR), checks if the report is high priority (IHP), if yes it plots the report.
If the report is not high priority it checks if the report is in GeoBox (IGB - will always
evaluate to true in this case). If it is, it plots every 8th report (INR), and does nothing with
other reports. In other words this agent plots all fast reports and every 8th of slow reports.

Loop

If

If

If

Plot

Plot

GNR

IHP

IGB

INR

Noop

Noop

S1

10.53 13.9812637

8

- Operator

- Task

- Parameter

- Condition

Key:

Fig. 6. Experiment 2, Best Agent of one run found in generation 337.
while (getNextReportFrom (“Sensor 1”) {
if (isHighPriority(report)) {Plot(report);}
else { GeoBox geoBox = new GeoBox(37,126,10.53,13.98);
 if (geoBox.isInside(report) { slowCounter++;if((slowCounter modulo 8) == 0) {
 Plot(report);}}}}

By comparing the initial agent (Fig. 4) with the final one (Fig. 6), it is apparent how
different the workflows are. The tasks added (in the right location) were IHP and INR.
Comparing the workflow of the best agent from this run with the workflow that we made
for parameter learning, notice that the filter (If, INR) for high priority reports is missing
in the learned workflow. This makes sense since the problem requires no High Priority
(fast) reports being filtered. The other difference is that the GeoBox is only utilized for
slow reports. This didn’t make a difference since the GeoBox is so large that it does not
exclude any reports.

The overall results of workflow learning are very encouraging. Our agents were able
to learn the new desired behavior on average in 350 generations. They did that even
though the fitness function was noisy and constructed in such a way as not to suggest
how to solve the problem. Very often the resulting workflows had many parts that were
never executed: we developed a pruning algorithm that removes those parts.

7. CONCLUSIONS
EPAL is a framework for software agents to automatically learn how to better perform in
their environment. The learning methodology we developed for intelligent agents is
revolutionary. It has a capability to generate and discover completely new behaviors as
well as adapt existing behaviors by changing task parameters. EPAL is a general
framework for intelligent agent learning that can be used for any intelligent software
agents as long as they are described by a workflow that can be further decomposed into
simple building blocks. The uniqueness of EPAL comes from its ability to generate real
software agents that can be executed in real military/other scenarios. To our knowledge
the solution we formulated is the first platform in which real software agents can learn
from their experience to perform standard tasks better. In the future, as we augment the
set of tasks that agents can build their workflows from, agents should be able to “learn
anything”, similarly to what humans do.

8. REFERENCES
Bigus, J.P., Schlosnagle, D.A., Pilgrim, J.R., Mills III, W.N., Diao, Y., 2002, “ABLE: A Toolkit for

Building Multiagent Autonomic Systems,” IBM Systems Journal, Vol. 41, No. 3.
Buczak, A.L., Cooper, D.G., Hofmann, M.O., (2003), “Evolutionary Platform for Agent Learning”,

Intelligent Engineering Systems Through Artificial Neural Networks, eds. C.H. Dagli, A.L.
Buczak, J. Ghosh, M.J. Embrechts, O. Ersoy, Vol. 13., pp. 201-206, ASME Press, New York.

ECJ, www.cs.umd.edu/projects/plus/ec/ecj/.
Hofmann, M.O., Chacón, D., Mayer, G., Whitebread, K.R., Hendler, J., 2001, "CAST Agents:

Network-Centric Fires Unleashed," Proceedings of the 2001 National Fire Control
Symposium, Lihue, HI, August 12-30.

Koza, J., 1993, “Genetic Programming – On the Programming of Computers by Means of Natural
Selection,” Cambridge, Massachusetts, MIT Press.

Ramamurthy, U., Bogner, M., Franklin, S., 1998, “Conscious Learning in an Adaptive Software
Agent,” Proceedings of Second Asia Pacific Conference on Simulated Evolution and Learning,
Canberra, Australia.

Stone, P., 1998, “Layered Learning in Multi-Agent Systems,” PhD Thesis, CMU.
Sun, R., Merrill and E., Peterson, T., 2001, “From implicit to Explicit Knowledge: A Bottom-up

Model of Skill Learning,” Cognitive Science, Vol. 25, No. 2, pp. 203-244.

