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Abstract

In the near future, wireless sensor networks (WSN) per-
forming sensing and communication tasks will be widely de-
ployed as technology rapidly advances. Communication is
one of the essential functionalities of these mobile networks
while power and computation resources in each sensor are
limited. Recently, attention has been drawn to using mo-
bility control to minimize energy consumption in wireless
sensor networks. In this paper, we are going to provide
quick convergence mobility control schemes to achieve opti-
mal configuration in a single data flow. The key idea of our
schemes is to use the optimal location information of each
relay node as a guide for node movement while maintaining
the connectivity of relay nodes along the data flow. Experi-
mental results show that our schemes can speed up the con-
vergence process to nearly the optimal and reduce the cost
of it almost to the minimum, compared with the best results
known to the date.

1 Introduction

With advancements in technology, wireless sensor net-
works (WSNs) performing sensing and communication
tasks will be widely deployed in the near future because
they greatly extend our ability to monitor and control the
physical environment and improve the accuracy of our in-
formation gathering [5], [7], [10], [15], [19]. Sensor nodes
can be deployed in inhospitable physical environments such
as battlefields, remote geographic regions, and toxic urban
locations. One specific example can be a group of mobile
robotic insects sensing dangerous areas or enemy targets
and sending back as much information as possible [2].

Before the sensor nodes are deployed, they are initially
powered. In many situations, once they are dispersed into
an environment, they cannot get recharged very often. Thus,
the power in sensors is the scarcest resource. Therefore,
communication mechanisms must be power efficient and

simple. As capability of mobility becomes more readily
available to WSNs [17], there are several recent studies on
using mobility as a control mechanism to minimize energy
consumption [6], [9], [11], [20], [21]. [6] presents a sim-
ple mobility control scheme using only one-hop neighbor-
hood information in which the connections between neigh-
bors will never be broken. [9] improves such a method by
solving the oscillation problem. However, it may take many
rounds of movement for nodes to reach their optimal loca-
tions as shown by an example in the later section covering
preliminary works.

In this paper, we provide new schemes that move the
relay nodes much more quickly to their optimal positions
without oscillation while the connectivity is maintained, so
that the energy consumption of WSNs can be reduced. We
put forward two schemes: MCC and MCF. MCC speeds up
the convergence process by avoiding the overreaction of a
node to the movement of its neighbors, while MCF reduces
the convergence time by moving the nodes as close to their
optimal positions as possible. The key idea of our schemes
is to use the optimal location information of each relay node
as a guide for mobility control. In later experimental re-
sults, we will show how much faster this information can
allow the process to converge. Finding the optimal location
of each intermediate node is an easy task. It is not much of
an overhead to the communication process because it can be
carried out along with the routing algorithm by just adding
a counter and the location information of the source and the
destination. In summary, there are four major features of
our schemes. The first is that, compared to existing mobil-
ity control schemes, our methods converge much faster and
reach nearly optimal results. The second is that our schemes
will not break the connections between a node and its two
neighbors. The third is that our schemes reduce the node
movement almost to the minimum. The fourth feature is
that our schemes use only one-hop neighborhood informa-
tion; no global information is needed.

In this paper, we assume that a path from the sources
to the destinationd has already been discovered using some



routing protocol. Only one-hop neighborhood information
is used here. Such information can be discovered by GPS
or some GPS-free positioning algorithms such as the one in
[3]. To make this paper easy to read, we use global location
in discussion.

The rest of the paper is organized as follows: Section
2 introduces some related work, Section 3 contains the pre-
liminary information, Section 4 presents our two quick con-
vergence schemes, Section 5 shows the experimental re-
sults, and Section 6 concludes the paper.

2 Related Work

There is a large amount of literature on power-efficient
topology control and routing; for examples see [13] and
[18]. Recently there have been several studies on using
mobility as a control primitive to minimize power/energy
consumption in such mobile networks [6], [9], [11], [20],
[21].

In [6], the authors prove that in a single active flow be-
tween a source and a destination pair, if the energy cost
function is a non-decreasing convex function, the optimal
positions of the relay nodes must lie entirely on the line be-
tween the source and destination, and that the relay nodes
must be evenly spaced along the line. Based on this, despite
the randomness of the initial deployment, if the nodes can
move towards their optimal locations under mobility con-
trol, the energy consumption can be minimized. In their pa-
per, the authors put forward synchronous and asynchronous
mobility control algorithms to reach optimality based on the
averaging algorithm [8], [14]. That is, each node’s opti-
mal location is the average of its left and right neighbors’
locations. In this paper, theleft and right neighbors of a
node refer to the left and right neighbors on the line between
the source and the destination. Thus, a node moves along
with the movement of its two neighbors. The algorithms are
simple; they only require one-hop local information of the
node’s left and right neighbors, and are distributed, which is
suitable for a mobile environment. Also, the authors prove
that the movement of a node in this way will not break the
connections between the node and its neighbors. However,
there is an implementation problem that the authors do not
mention in the paper. That is, due to round-off errors [1],
the nodes may oscillate around their optimal locations and
never stop. Thus, their energy will be depleted very quickly
before they can perform useful tasks.

This problem is pointed out by [9] and fixed by a thresh-
old which is set to0.0001. In this way, if the difference
between the node’s current location and the next location
is no greater than the threshold, the node can stop moving.
However, as we can see from the experimental results, the
convergence process is still very slow. It can take many
rounds of movement for the nodes to reach their optimal lo-

cations. The more movement there is, the faster the power
in each node will be depleted. Thus, slow convergence can
be a negative factor to justify the effectiveness of the mobil-
ity control primitive in power-efficient communication.

Actually, if the location of the sourceL(s), the location
of the destinationL(d), and the labeli of an intermediate
relay nodeui are known, the optimal locationL′(ui) of ui

can be calculated asL′(ui) = L(s) + i × L(d)−L(s)
n , as-

suming thati ∈ [0, n], u0 is sources andun is destination
d [6]. Thus, the nodes can move to their optimal locations
directly, without oscillation, in one round. However, this
method can break the connections between a nodeui and
its neighbors. When neighbors are disconnected, the data
sent is lost and has to be resent from the source after time-
out. The neighbors have to reconnect through sending each
other Hello messages. As indicated in [4, 12, 16], all of
these will decrease the communication efficiency.

3 Preliminary

We assume that all the sensor nodes have the same trans-
mission range. If two sensor nodes are within each other’s
transmission range, they can communicate directly and they
are calledneighbors. Otherwise they have to rely on in-
termediate nodes to relay messages for them. We define a
WSN as a graphG = (V,E), whereV is the set of all sen-
sor nodes andE is the set of all edges between pairs of sen-
sor nodes. If two sensor nodes can communicate directly,
there is an edge between them inG. The location of each
nodeu is (xu, yu), simply denoted asL(u). |L(u)− L(v)|
is the physical distance between two nodesu andv. L′(u)
denotes the target location ofu in its movement.

We assume that a path from the sources to the destina-
tion d has already been discovered using a routing protocol,
e.g., a greedy routing protocol or one of the ad hoc routing
protocols. We also assume that boths andd are not moving
during the process. Otherwise, the path is always broken
and a new routing path needs to be established. We label
the nodes from the source to the destination as0, 1, · · · , n.
Nodeu0 is the source, nodeun is the destination, and nodes
u1, · · · , un−1 are intermediate relay nodes. For each node
ui, 1 ≤ i ≤ n − 1, nodeui−1 is its left neighbor and node
ui+1 is its right neighbor. Neighbors can share informa-
tion by exchanging short messages. To simplify the dis-
cussion, we describe the schemes in a synchronous, round-
based system. All the schemes presented in the paper can
be extended to an asynchronous system. However, to make
our schemes clear, we do not pursue the relaxation.

In a single flow of communication between a sources
and a destinationd, the optimal configuration of relay nodes
is established in [6] as follows. First, assume that the energy
cost function is a non-decreasing convex function. Then,
the optimal positions of the relay nodes must lie entirely



Algorithm MCD [6]: Mobility control at each relay node
ui.

1. ExchangeL(ui) with ui−1 andui+1.

2. Receive L(ui−1) and L(ui+1). Set L′(ui) =
L(ui−1)+L(ui+1)

2 .

3. Set damping factorg a random value∈ (0, 1], move
towardL(ui) + g × (L′(ui)− L(ui)).

round sx node1x node2x node3x node4x dx

0 92.11134 86.99914 80.11193 74.99975 69.11155 63.99937
1 92.11134 86.11163 80.99944 74.61174 69.49956 63.99937
2 92.11134 86.55539 80.36169 75.24949 69.30556 63.99937
3 92.11134 86.23651 80.90244 74.83362 69.62444 63.99937
.. .. .. .. .. .. ..

53 92.11134 86.48894 80.86656 75.24416 69.62177 63.99937
54 92.11134 86.48895 80.86655 74.24417 69.62176 63.99937
55 92.11134 86.48894 80.86656 74.24416 69.62177 63.99937
56 92.11134 86.48895 80.86655 74.24417 69.62176 63.99937
57 92.11134 86.48894 80.86656 74.24416 69.62177 63.99937
58 92.11134 86.48895 80.86655 74.24417 69.62176 63.99937
.. .. .. .. .. .. ..

Table 1. The oscillation of nodes to reach op-
timal locations

on the line betweens andd. Furthermore, the relay nodes
must be evenly spaced along the line. A uniform distributed
algorithm that allows the relay nodes to move to their op-
timal positions is introduced in [6] (see Algorithm MCD).
The key ingredient of this algorithm is the simple average
calculation. Note that although a relay node computes the
average of its two neighbors, the node only moves toward
this point, instead of reaching it in one round. In other
words, the movement is damped using a damping factorg in
the algorithm. The damping process is used to avoid over-
reaction of each node. The authors of [6] also prove that the
connection between communicating neighbors using MCD
is never broken.

However, MCD has an implementation problem; it may
make each node oscillate around its optimal location end-
lessly due to round-off errors (see Table 1 for an example of
oscillation). There are six nodes in the table, including the
source and the destination. The transmission range of each
node is10. Suppose they are placed in a line and they coor-
dinate of each node is the same. Therefore, in the table, only
thex coordinate of each node is shown. Round0 displays
the initial location of each node. Starting from round1, each
relay node uses MCD (supposeg is set to1) to calculate its
optimal location. From the table, we can see that the process
to reach the optimal location of each node converges grad-
ually. However, starting from round53, the nodes oscillate
around their optimal locations and never stop. This kind of
oscillation is caused by the round-off errors in computers.

Algorithm MCM [9]: Mobility control with minimum total
moving distance.

1. The source nodes sendsL(s) and its label0 to u1.
When each relay nodeui receivesL(s) and the label
i − 1, it will passL(s) and its own labeli to the suc-
ceeding node along the path. Such a propagation will
end atd.

2. Once L(s) is received at the destination noded, d
sends a message carryingL(d) back tos along the
path.

3. At each relay nodeui, once bothL(s) andL(d) are
received, setL′(ui) = L(s)+ i× L(d)−L(s)

n and move
ui to L′(ui).

It wastes computation resources and will deplete the energy
in nodes very quickly. Besides, the convergence process is
very slow, too; it takes about53 rounds for the nodes to get
close to their optimal locations.

To prevent oscillation, [9] sets a thresholdMDPR =
0.0001 so that if the difference between nodeui’s target
positionL′(ui) and the current positionL(ui) is less than
MDPR, the node does not have to move any more. Thus,
each node can stop earlier. This algorithm is calledMC1.

Obviously, connections between neighbors along the
path are not lost using MC1 [9]. However, this algorithm
still suffers from the slow convergence problem.

After the locationsL(s) andL(d) in the absolute coordi-
nate system are collected at a relay nodeui, its optimal po-
sition can be determined byL′(ui) = L(s) + i× L(d)−L(s)

n
and this node can move to the optimal position directly
without oscillation [6]. An algorithm for this is written in
detail in [9] and is presented in Algorithm MCM here.

Algorithm MCM has a very nice property: the total mov-
ing distance of nodes in MCM is minimum.

It is noted that MCM does not create much overhead in
the system because it can be combined with the routing pro-
cess. When sources sends a message tod, it can also send
its L(s) and its label0 along with the message. Each in-
termediate node will do the same thing until the message
reachesd. Thend sends an acknowledgement plus itsL(d)
back tos. When each relay nodeui hasL(s), L(d) and its
label, it can calculate its target position.

However, when nodes are moving towards their optimal
positions using MCM, it is likely that the connections be-
tween some nodes will be lost. For example, suppose nine
nodesu0, u1, · · · , u8 are aligned in a line. Nodeu0 is the
source andu8 is the destination. The transmission range
of each node is10. Nodeui (i ∈ [0..4]) is at locationi.
Node u5 is at location14, nodeu6 is at 23, nodeu7 is



at 32 and nodeu8 is at location41. According to Algo-
rithm MCM, the optimal location of relay nodeui should
be L(ui) = 0 + (41 − 0)/8 ∗ i. Therefore, the optimal
location of nodeu5 is 25.625. If nodeu4 is still at its old
location4 when nodeu5 moves toward its optimal location,
the connection between them is lost.

Now the challenge lays in determining how to speed up
the convergence process without loosing the connection be-
tween communicating neighbors. This is our topic in the
next section.

4 Two Quick Convergence Schemes

In this section, we describe two mobility control
schemes, MCC and MCF, to let nodes move to their opti-
mal locations much more quickly. MCC speeds up the con-
vergence process by avoiding the overreaction of a node to
the movement of its neighbors, while MCF reduces the con-
vergence time by moving the nodes as much closer to their
optimal positions as possible. Both schemes use the infor-
mation of the optimal locations of the relay nodes. This
optimal location information is obtained by running Algo-
rithm MCM before the convergence process starts. The os-
cillation problem is still solved using the threshold MDPR.

4.1 Scheme MCC

The first schemeMCC combines MCM with the Modi-
fied MCD (details shown in Algorithm MCC). This scheme
still uses the average calculation in MCD. The difference
is that in MCD, a node will move as the locations of its left
and right neighbors change. However, in MCC, a relay node
knows its optimal position by MCM, and if the distance be-
tween its new position (which is calculated as the average
of its two neighbors’ positions) and its optimal position is
larger than the distance between its current position and its
optimal position, it does not move. In this way, a node can
avoid unnecessary movements. Therefore the time it takes
to complete the convergence process can be reduced. Again,
the MCM part of the algorithm can be combined with a rout-
ing algorithm to reduce overhead. The MCM is only called
once if the locations of the source, the destination, and the
number of relay nodes do not change for a period of time.

It can be proved that the connectivity is kept in MCC
while the nodes are moving.
Theorem 1 Any connection between communicating
neighbors is not lost in MCC.

Proof. Without loss of generality, in our proof, we need
to cover cases where a node will move with the location
changes of its two neighbors and cases where a node will
not move if the new location is farther away from its opti-
mal location than its current location. To cover both cases,

Algorithm MCC : MCM combined with Modified MCD.

Apply MCM to obtain the optimal locationOL(ui) for
each relay nodeui.

For each relay nodeui,

1. ExchangeL(ui) with ui−1 andui+1.

2. Receive L(ui−1) and L(ui+1). Set L′(ui) =
L(ui−1)+L(ui+1)

2 .

3. If |L′(ui) − OL(ui)| > |L(ui) − OL(ui)| no move-
ment; else

4. If |L′(ui)− L(ui)| ≥ MDPR, move toL′(ui).
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Figure 1. Illustration of Theorem 1



we come up with a network as shown in Figure 1. There are
five relay nodes0, 1, · · · , 4 at locationsu0, u1, · · · , u4. As-
sume all the nodes have the same transmission ranger. The
solid lines between two nodes indicate that the two nodes
can communicate with each other directly (they are neigh-
bors), while the dashed lines are used to indicate the dis-
tance between the two nodes.

The first part of MCC calculates the optimal locations
of the relay nodes. In the figure, only the optimal location
of node1 is shown. Node1 is the one that will not move
because its new location which is at the midpoint ofu0 and
u2 will put it farther away from its optimal location. All
others will move to their new locations, that is, node2 will
move tou′2 which is the midpoint ofu1 andu3, and node3
to u′3 which is at the middle ofu2 andu4.

Now we want to prove that the connections of nodes in
their new locations are not lost. That is,|u1−u′2| and|u′2−
u′3| are less or equal to the transmission ranger.

First we prove that|u1 − u′2| ≤ r is true. Obviously in
triangleu1u2u3, either |u1 − u2| ≥ |u1 − u′2| is true or
|u2 − u3| ≥ |u′2 − u3| is true. Since|u1 − u′2| = |u′2 − u3|,
|u1 − u2| ≤ r, and|u2 − u3| ≤ r are true,|u1 − u′2| ≤ r is
also true.

Next we prove that|u′2 − u′3| ≤ r is true. Denote the
midpoint ofu2u3 asu23. |u′2 − u′3| ≤ |u′2 − u23| + |u′3 −
u23| = 1

2 (|u1 − u2| + |u3 − u4|) ≤ 1
2 (r + r) = r. So

|u′2 − u′3| ≤ r is true.
Therefore, the connectivity is not lost in Algorithm

MCC.

4.2 Scheme MCF

The second schemeMCF also uses MCM to obtain the
optimal location for each relay node. The idea is that the
relay nodes should move toward their optimal locations as
much as possible without breaking the connections with
their left and right neighbors. In this way, for each node,
there is no extra movement. The details of this algorithm
are shown in Algorithm MCF.

In MCF, the target locationL′(ui) can easily be calcu-
lated using a small program that solves mathematical equa-
tions. Theorem 2 shows that the connection between com-
municating neighbors is not lost in MCF.
Theorem 2 Connectivity is kept between communicating
neighbors in MCF.

Proof. Without loss of generality, there are four relay nodes
0, 1, 2, 3 at locationsu0, u1, u2, u3 (see Figure 2). The
transmission range of each node isr. The area covered by
a node’s transmission range is represented by a dashed cir-
cle in the figure. A solid line between two nodes indicates
that they can communicate with each other directly while

Algorithm MCF : Move to optimal location as much as
possible.

Apply MCM to obtain the optimal locationOL(ui) for
each relay nodeui.

For each relay nodeui,

1. Calculate target locationL′(ui) which is the closest
point toOL(ui) without breaking the connection with
ui’s left and right neighborsui−1 andui+1.

2. If |L′(ui)− L(ui)| > MDPR, move toL′(ui).

0
u1 u2

u3

u’

u’

1

2

OL

u

1 OL2

Figure 2. Illustration of Theorem 2



a dashed line indicates the distance between them. Node1
has neighbors0 and2 and node2 has neighbors1 and3.
The optimal locations of nodes1 and2 areOL1 andOL2

respectively from MCM. Now node1 and node2 will move
toward their optimal locations as much as possible without
loosing the contact with their neighbors. The new locations
of nodes1 and2 areu′1 andu′2 as shown in the figure.

Now we want to show that the communication between
nodes1 and2 in their new locations is not lost, that is,|u′1−
u′2| ≤ r. From the figure, in shapeu1u2u

′
2u
′
1, either|u′1 −

u′2| ≤ |u′1−u2| is true or|u′1−u′2| ≤ |u1−u′2| is true. Since
|u1 − u′2| ≤ r and|u′1 − u2| ≤ r are true, so|u′1 − u′2| ≤ r
is true. This means that the communication between nodes
1 and2 in their new locations is still within the ranger.

5 Experimental Results

In this section, we verify the improvement our new
schemes offer on convergence speed and cost through ex-
perimental results. In a synchronous, round-based system,
the speed of achieving stablization is measured by the num-
ber of rounds of node movement needed for convergence.
The cost of mobility control schemes primarily comes from
the energy consumed in node movement which is deter-
mined by the distance a node moves. In our experiments,
the total distance of movement of all the nodes is used as a
metric for the cost of mobility control schemes.

In the experiments, we compare the convergence speed
and the cost of four algorithms: (1) MC1; (2) MCC; (3)
MCF; and (4) MCM. For each algorithm, the number of
rounds and the total distance of node movement are calcu-
lated. In our experiments, the number of nodes is set to5,
10, 15 and20, including the source and the destination. The
transmission range is set to20 and40 [22]. The initial lo-
cations of the nodes are randomly generated. The damping
factor in MC1 is set to1 for the sake of convenience.

Figures 3 and 4 show the number of rounds of node
movement for different algorithms when the transmission
range is set to20 and40 respectively with the number of
nodes varied. In the figures, MC1 has the most rounds of
node movement, MCC has less, and MCF and MCM have
the least. Due to the nature of MCM, we know that it only
takes one round for the nodes to reach their optimal posi-
tions. From either figure, we can see that the line of MCF is
almost overlapped with that of MCM. This shows that MCF
can converge surprisingly fast. It almost reaches the optimal
result of MCM.

Figures 5 and 6 show the total distance of node move-
ment during the convergence process using different algo-
rithms when the transmission range is20 and 40 respec-
tively with the number of nodes varied. The results in these
two figures match those of the number of rounds of node
movement. One very good result is that MCF is so close to
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MCM in terms of the total distance that their lines overlap
in the figures. As we know, MCM achieves the minimum
total movement. Therefore, the total movement using MCF
is extremely close to the minimum.

In summary, these results show us how effective it is to
embed the information of optimal locations of relay nodes
into the schemes. Despite a very low overhead to gather this
information at the beginning, the speed of the convergence
process has been greatly increased and the cost has been
greatly reduced - especially in the MCF scheme where it
almost reaches the best results for both convergence speed
and cost. In addition, unlike algorithm MCD, both MCC
and MCF will not incur any node-overreaction. Therefore,
there is no need to put the damping factorg into the algo-
rithms, because it brings nothing but delay.

6 Conclusion

In this paper, two quick convergence mobility control
schemes, MCC and MCF, have been put forward to improve
communication in WSNs. MCC speeds-up the convergence
process by avoiding node’s overreaction to the movement of
its neighbors, whereas MCF reduces the convergence time
by moving the nodes as close to their optimal positions as
possible. Both schemes have embedded the information of
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the optimal locations of relay nodes into the mobility con-
trol. Compared to existing mobility control schemes, they
can speed up the convergence process nearly to the opti-
mal and reduce the cost to nearly the minimum in WSNs.
This is especially true for MCF. These results provide strong
evidence of support in justifying the effectiveness of using
mobility control to reduce energy-consumption to improve
communication efficiency in WSNs. In this paper, we have
only discussed the communication of a single active flow
between one source and one destination. Communication
among multiple source-destination pairs was not addressed,
but will be in our future work.
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