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Abstract

In this paper, we propose a new control method to cover
the “holes” in wireless sensor networks. Many applications
often face the problem of holes when some sensor nodes are
disabled from the collaboration due to their failures and
misbehavior. These holes may occur dynamically, and such
a problem cannot be solved completely by simply deploy-
ing more redundant sensors. With a synchronization around
each hole using the directed Hamilton cycle, one (and only
one) snake-like cascading replacement process will be initi-
ated in the local area in order to fill in that vacant area with
a spare node. In this way, network connectivity and cov-
erage can be guaranteed. Our analytical and experimental
results show substantial improvements of such a replace-
ment compared with the best result known to date.

1 Introduction

Recent advances in micro-electromechanical systems,
digital electronics, and wireless communications have en-
abled the development of low-cost, low-power, multi-
function sensor devices. These devices can operate au-
tonomously to gather, process, and communicate informa-
tion about their environments. When a large number of
sensor devices collaborate using wireless communications,
they constitute a wireless sensor network (WSN) [1]. Appli-
cations of WSNs range from environmental monitoring to
surveillance to target detection [7]. Due to the fact that sen-
sors can very easily fail or misbehave, many nodes can be
isolated from the network collaboration [2]. Thus, a “hole”
in the surveillance area may occur in the deployed area, and
such an occurrence may be dynamic. For instance, as in-
dicated in [8], the attacker can cause the nodes to move
and deplete their battery power, which might reduce node
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density in certain areas. The holes in the surveillance area
can occur even when many redundant sensors are deployed.
Many applications often face the problem of such holes in
surveillance areas, causing incomplete coverage. To ensure
that the entire network works correctly, complete coverage
of its surveillance area must be provided.

Recently, rather than preventing the occurrence of the
holes, some extended virtual force methods [5, 10] that
simulate the attractive and repulsive forces between sensor
nodes have been proposed to fix the hole problem. In these
methods, sensors in a relatively dense region will slowly
move towards the relatively sparse regions according to
each other’s repulsive force and head towards a hole in the
network. However, as indicated in [6], without global in-
formation, these methods may take a long time to converge
and are not practical for real applications due to the cost
in total moving distance, total number of movements, and
communication/computation. Then, in [6], a more practical
balancing method under the virtual grid model [9] is dis-
cussed. This method allows for quick convergence but re-
quires node adjustments in the entire grid network, causing
many unnecessary node movements just for providing the
coverage for a single hole. In an early work [3], a localized
control method based on 1-hop neighborhood is proposed.
Whenever a vacant area is detected, a snake-like cascad-
ing replacement process is initiated to move nodes to cover
the hole area. However, due to the lack of synchronization,
the existence of a hole will incur multiple replacement pro-
cesses, causing redundant processes and some unnecessary
node movements.

To reduce the redundant replacement processes initiated
by the method in [3], a new control scheme is proposed in
this paper. There are three major contributions.

• Whenever a hole area is detected, the snake-like cas-
cading replacement will be initiated under our syn-
chronization. As a result, one and only one replace-
ment node will move in from neighbors.

• The cost of our new replacement process is analyzed in



terms of the number of node movements and the total
moving distance.

• A simulation is developed to illustrate the correctness
of our analytical results. Compared with the best re-
sults known to date, the experimental results show the
improvement of our new method in terms of the num-
ber of node movements, the total moving distance, and
the success rate of hole recovering.

A short summary of our approach follows. First, we
build a surveillance model to detect the occurrence of a
hole. We partition the entire surveillance area into many
small squares (of sizer × r) in a virtual grid model [9].
After many faulty sensors and misbehaving sensors are dis-
abled, the rest of the nodes (also called enabled nodes) con-
stitute the WSN. In each grid, one and only one enabled
node will be elected as the grid head to monitor the neigh-
borhood. The rest of the enabled nodes in the same grid
are called spare nodes. As indicated in [9], the connectivity
and coverage of networks can be guaranteed if each grid has
its own head. According to their locations, all the grids are
threaded along a directed Hamilton cycle. When a grid does
not have the head, the directed Hamilton cycle turns into a
directed Hamilton path. One (and only one)replacement
processwill be initiated at the preceding grid along that di-
rected Hamilton path to move a spare node into this vacant
area. In this way, the neighboring grids around the vacant
grid are synchronized to avoid any redundant replacement
process that might be initiated. As a result, each grid will
be filled by at least one enabled node which will become the
head, allowing the whole network to keep its coverage and
connectivity, even when many nodes are disabled and the
network is disconnected. It is noted that the movement of
a node during the replacement process may trigger another
replacement for that particular node, causing a snake-like
cascading movement. In our analytical and experimental
results presented in this paper, we will show that the cost
of such a moving process is limited in terms of the num-
ber of total node movements and the total moving distance.
Throughout the paper, proofs to theorems are shown in [4].

2 Preliminary

We assume that all the nodes have the same communi-
cation rangeR. The nodes inside the communication range
are called neighbors and two neighboring nodes are directly
connected. Each nodeu has its location, which is simply
denoted byL(u). The location information can be discov-
ered by having Global Positioning System (GPS) receivers
at some fixed nodes or a mobile beacon node, or just by
relying on the relative coordinate system. We partition the
whole network into ann × m 2-D grid system (see Fig-
ure 1 (a)). Each grid is of a square sizer × r and is de-
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Figure 1. (a) Virtual grid and grid heads. (b)
Hamilton cycle in a 4×5 grid system.

noted by its relative location in the entire system, say(x, y)
(0 ≤ x ≤ n − 1, 0 ≤ y ≤ m − 1). Two grids(x1, y1)
and (x2, y2) are called neighboring grids if their location
addresses differ in one (and only one) dimension, sayX .
Moreover,| x1 − x2 | + | y1 − y2 |= 1. Each grid(x, y),
except the ones at the edge of grid system, has four neigh-
bors(x, y + 1), (x − 1, y), (x, y − 1), and(x + 1, y), with
one in each of four directions: north, south, east, and west.

After many faulty nodes and misbehaving nodes are dis-
abled from the collaboration, the rest of the nodes, also
called enabled nodes, will constitute the WSN. According
to the results presented in [9], whenR =

√
5r, each en-

abled node can communicate with nodes in the neighboring
grids. In each grid, one of the enabled nodes will be elected
as the grid head. The rest of the enabled nodes in the same
grid are called spare enabled nodes, or simply spare nodes.
In this way, when each grid has its own head, the connec-
tivity of all the heads and the coverage of the entire network
can be guaranteed. Each head can monitor the status of the
heads in neighboring grids. To minimize the coverage over-
laps between the heads, we do not pursue the surveillance
of diagonal neighboring grids for each head, which requires
a larger communication rangeR = 2

√
2r (>

√
5r). As a

result, each movement monitored by a head will be limited
within two neighboring grids. Each head knows the follow-
ing information: (1) its grid location, and (2) the number
of enabled nodes in the grid and their locations. Moreover,
all the grids are connected in a Hamilton cycle in one di-
rection; i.e., a directed Hamilton cycle (see the sample in
Figure 1 (b)). Each head also monitors the area of the suc-
cessor grid along such a directed Hamilton cycle and is in
charge of communication with the corresponding head. The
role of each head can be rotated within the grid.

It is noted that the grid partition with global informa-
tion can only ensure one head existing in each grid territory.
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Figure 2. Vacant grid, its location along
the Hamilton cycle, and the corresponding
movement control.

By only using the 1-hop neighborhood information, we can
guarantee the existence of heads in anyr × r square terri-
tory with a localized coverage scheduling algorithm. After
that, all the schemes presented in this paper can be extended
easily under such a local view model. To make our move-
ment control schemes clear, we only use the global parti-
tion model. Moreover, we describe the schemes in a round-
based system. All the schemes presented in this paper can
be extended easily to an asynchronous system. However, to
simplify the discussion, we do not pursue the relaxation.

3 Replacement Process and its Analysis

This section introduces our control scheme to fill in any
vacant grid with enabled nodes. As a result, each grid will
have its own head and the coverage problem will be solved.

In our approach, each grid is monitored by not only its
head, but also the head in the preceding grid along the di-
rected Hamilton cycle, say nodeu. Whenever this grid be-
comes vacant, i.e., no head exists, the replacement process
will be initiated immediately atu. In this way, the vacant
grid can be detected and covered. It is noted that only the
1-hop neighborhood is used in our approaches and the con-
trol scheme is implemented in a fully distributed manner to
support any dynamic change, which makes the entire sys-
tem more scalable.

We summarize the replacement process as follows. First,
that nodeu will select one spare nodev in its grid to move
to the vacant grid (see Figure 2 (b)). If such a spare node
cannot be found,u itself will move to the vacant grid. Be-
fore the movement,u will send a notification to the head
of its preceding grid (see the order in Figure 2 (a)). When
the corresponding head, say nodew, receives such a notifi-
cation (in the next round), the above selection process will
be repeated (see Figure 2 (c)) which then causes a so-called
cascading movement (see Figure 2 (d)). The whole cascad-

ing movement process of nodes is snake-like. The details
are shown in the following algorithm.

Algorithm 1: Mobility control scheme based on the directed
Hamilton cycle

1. At a headu, the following replacement process will beiniti-
ated whenu cannot find the head in the successor grid along
the directed Hamilton cycle; i.e., a vacant grid in such a di-
rection is detected.

2. Find a spare node in the grid ofu, nodev, to move into that
vacant area before the next round starts.

3. If the above step fails, repeat the following steps until the
notified nodeu can find a spare node in the above step: (a)
Send the notification to the preceding grid to ask for a re-
placement foru itself. (b) Wait until the corresponding head
w receives this notification. (c) Moveu to the vacant grid be-
fore the next round starts; i.e., leaving the current grid vacant
for cascading replacement.

Theorem 1: Any vacant grid will gain a new head node in
the above control scheme.

Because of the use of the Hamilton cycle, the above re-
placement processes are able to cover the holes whenever
spare nodes exist in the network. This will favor the net-
works with sparse deployment, or in the case when some
critical condition disables the most of deployed node. This
distinguishes our new approach from the existing ones [3, 6]
which require at least4×m×n deployed nodes for am×n

grid system. Because such a Hamilton cycle is directed,
the above replacement process is conflict-free when multi-
ple holes occur in the networks simultaneously. As shown
in the experimental results, this improves the success rate
of hole-recovery. Moreover, due to the use of the directed
Hamilton cycle, only one replacement will be initiated for
a single vacant grid. That is, there is no overreaction [3],
and each replacement is necessary. The following theorem
provides an estimate on the average node movements,M ,
in any replacement when nodes are deployed in a uniform
distribution.

Theorem 2: For any converged replacement process,M =
∑

L

i=1
i × P (i), whereL (> 1) is the length (in hops) of the

directed Hamilton path which is deduced from the directed
Hamilton cycle,N is the number of spare nodes left in the
entire network, andP (i) =











1 − (L−1

L
)N i = 1

∏i−1

k=1
( L−k

L−k+1
)N i = L

(1 − ( L−i

L−i+1
)N )

∏i−1

k=1
( L−k

L−k+1
)N otherwise

(1)

Figure 3 shows our analytical results for a small-sized
grid system (4 × 5) as well as a medium-sized grid system
(16 × 16). For instance, when 12 spare nodes exist in the
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(b) 16 × 16 grid system (L=255).

Figure 3. Analytical results of the number of
node movements for a single replacement.

4×5 grid system, the replacement takes 2.0139 movements
on average. That is, in most cases, the replacement process
will converge within 2 movements. When the size of grid
system is increased, it will take longer to approach the spare
node along the Hamilton path. However, when the density
of enabled nodes is kept above 1.68 per grid, the number
of node movements can still be controlled to 2 in the16 ×
16 grid system. Compared with the minimum density of
4 per grid required in [3, 6], the improvement of our new
approach is obvious.

4 Implementation Issue

In our approach, the replacement is initiated at a head
node only when such a node cannot detect any enabled node
in its successor grid. We connect all the grids along a di-
rected Hamilton cycle to ensure that each vacant grid will
have its own replacement initiated at one and only one of its
neighboring grids.

For anm × n grid system, when eitherm or n is even,
the Hamilton cycle, as shown in a sample4 × 5 grid sys-
tem in Figure 1 (b), can be built easily. When bothm and
n are odd, we constitute an(m × n − 1)-hops Hamilton
cycle with directed dual-paths. These two directed Hamil-
ton paths share(m × n − 2) girds. For the remaining two
grids, denoted byA andB, path one starts from the first
and ends at the second, while path two starts from the sec-
ond and ends at the first. Figure 4 shows a sample of this
construction in a5 × 5 grid system. DenoteC as the com-
mon preceding grid ofA andB. DenoteD as the common
successor grid ofA andB. We have the following extended
control scheme to ensure that Theorem 1 can still hold in
such a Hamilton cycle with dual-paths.

Algorithm 2: Mobility control scheme for a grid system with the
dual-path Hamilton cycle

1. Determine the gridsA, B, C, andD.

2. When gridA becomes vacant,C will initiate a replacement
process. Such a replacement will stretch along path two with

direction along the Hamilton path, i.e., the direction of node moving 

path one path two sharing part

(a) (b)

A

BB

A

D

C

D

C

Figure 4. Dual paths in construction of the
Hamilton cycle in a 5 × 5 grid system.

Algorithm 1. Similarly, whenever gridB becomes vacant,
its replacement initiated atC will stretch along path one.

3. When gridD becomes vacant, onlyB will initiate the re-
placement process and such a replacement will stretch along
path one. However, at gridC, grid A with spare nodes is
always preferred before the replacement continues to stretch
along path one.

4. When any other grid becomes vacant, its replacement will
follow the direction of the Hamilton cycle until it reaches
grid D. FromD, eitherA or B will be notified when any of
them has at least one spare node.

Simply, the extended control scheme has three cases. In
case one, when gridA becomes vacant, the replacement
initiated at gridC will stretch along path two with Algo-
rithm 1. Similarly, when gridB becomes vacant, the re-
placement initiated at gridC will force the node to move
along path one. The replacement initiated for these two va-
cant grids can stretch as far as(m×n−1) hops away along
a Hamilton path; i.e.,L = m×n−1. In case two, when grid
D becomes vacant, only gridB will initiate the replacement
process. After that, the process will stretch along path one.
However, gridA with spare node(s) is always preferred for
grid C to send out the replacement notification. After that,
the replacement (if any) will continue to stretch along path
one. In case three, when any other grid becomes vacant, the
replacement process will stretch along the sharing part of
both paths until it reaches gridD. From gridD, eitherA or
B will be notified when any of them has at least one spare
node. In both case two and case three, the replacement pro-
cesses can stretch as far as(m × n − 2) hops away while it
does not miss any chance to find a spare node in the entire
network.

Corollary 1: In a system with the dual-path Hamilton cycle,
a vacant grid can be filled whenever at least one spare node
exists in the network.
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(a) 4 × 5 grid system (L=19).
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Figure 5. Estimates of the total moving dis-
tance for a single replacement (r = 10).
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cess rate.

Corollary 2: For any converged replacement process in a
m × n grid system with the dual-path Hamilton cycle,

M ∼= M(m × n − 2) (2)

whereM(k) =
∑

k

i=1
i × P (i).

In Corollary 1, we prove that Theorem 1 can still hold
in the dual-path Hamilton cycle. In Corollary 2, we pro-
vide the analysis on the number of node movement in each
replacement process in the grid system with the dual-path
Hamilton cycle.

Another important issue in our implementation is the
mobility control in each node movement. To control the
moving distance, each spare node moves straightforward to
the central area of the target grid. The minimum distance
is 1

4
r and the maximum distance is

√

58

4
r. In this paper, we

use the average,1.08 × r, to estimate the total moving dis-
tance. Figure 5 shows our estimates based on the results in
Figure 3 whenr = 10.

5 Experimental Results

In this section, we verify the improvement of our con-
trol scheme based on the Hamilton cycle (SR), and com-
pared it with the best result known to date, as seen in [3]

(AR). The results show that our snake-like cascading move-
ment will successfully cover any hole while substantially
lowering the cost. For the deployed sensors with com-
munication rangeR = 10m, we determine the grid size
4.4721m × 4.4721m and then form the virtual grid sys-
tem [9] in the target surveillance area. After deploying all
the nodes in the uniform distribution, we randomly disable
some nodes from the collaboration and create the holes.
Then, the rest of the nodes are enabled nodes and they con-
stitute the WSN. One of enabled nodes in each grid (if any)
will be elected as the head. After that, we apply schemes
SR andAR to fix the hole problem. Finally, we test the per-
formance of different control schemesAR andSR in terms
of their success in finding a spare node to fill the hole. We
also test the cost of these schemes in terms of the number
of replacement processes initiated, the total number of node
movements and the total moving distance. The experimen-
tal results of ourSR scheme are also compared with the
analytical results to verify the correctness of our approach.
It is noted that each movement of nodeu from one grid to
its neighbor will randomly select the destination locationin
the central area of the target grid.

The variable parameters in our simulation are as follows.
(1) Number of gridsm × n. Once the size of each grid has
been decided, the surveillance area of security applications
will determine the size of grid system needed. We use16×
16 in the simulation. (2) Number of spare sensorsN in
the networks. In [6], it has been mentioned that the control
scheme can guarantee the coverage with at least3m × n

spare nodes. Therefore, we deploy 5000 sensors and select
those cases whenN ’s value is in the range from10 to 1000
(≃ 4m × n).

Figure 6 (a) shows the number of replacement pro-
cesses initiated in schemesAR andSR in the cases with
(N + m×n) enabled nodes. Figure 6 (b) shows how many
of them (percentage-wise) will approach a spare node in
the networks and converge successfully. We also show the
number of node movements in both schemes in Figure 7 (a),
and the total node movements in meters/distance for both
schemes in Figure 8 (a). For the comparison, Figure 7 (b)
and Figure 8 (b) show our analysis on the number of move-
ments and the total moving distance inSR, respectively.

Results and observations can be summarized as follows:

• [3] claims that among all the existing movement-
assisted methods to fix the hole, schemeAR has the
best performance insofar as the total number of node
movements and the total moving distance are con-
cerned. However, some redundant procedures and
node movements are required in this method. Due to
the use of the directed Hamilton path, the replacement
processes initiated around the vacant grid can be syn-
chronized. As a result, fewer than 50% replacement
processes are needed inSR. The total number of node
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Figure 7. The number of node movements.

movements and the corresponding total moving dis-
tance can be reduced substantially.

• When N < 55, SR requires a long path along the
Hamilton cycle to approach the spare node. More node
movements and moving distance are required inSR

method. However, theAR method has10% ∼ 20%
failures in replacement processes while the success
rate is always 100% inSR method; that is, the surveil-
lance coverage is less robust inAR method in the net-
works with lower node density.

• WhenN ≥ 55 (i.e., > 1.22 enabled node per grid)
which is more common in real applications,SR re-
quires fewer node movements and less moving dis-
tance while keeping the success rate higher thanAR.
As shown in the results, our new approachSR is more
cost-effective thanAR in usual cases.

• The cascading movement is adopted in bothAR and
SR. The SR replacement process is just one of the
cases of theSR replacement processes that are along
a special path.SR has the same bound of converging
speed asAR, which has been presented in [3].

• A short-cut along the Hamilton cycle can reduce the
length of the path for replacement process to approach
a spare node. The construction of such a short-cut will
be our future work to further increase the convergence
speed ofSR. As a result, the cost ofSR will be re-
duced greatly in the cases whenN < 55.

6 Conclusion

In this paper, we have presented a more cost-effective,
snake-like replacement process to cover the surveillance
holes of WSNs where all sensors deployed in certain sens-
ing areas are disabled from the collaboration. As a result,
the connectivity and coverage of WSNs can be guaranteed,
even when the working status of nodes changes dynami-
cally. In our methods, only the 1-hop neighborhood is used,
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Figure 8. The total moving distance of nodes
(meters).

and the adjustment of nodes can be controlled within the lo-
cal area under a synchronization model based on the Hamil-
ton cycle. The analytical and experimental results show the
proposed method to be robust and scalable with minimized
costs. In our future work, a more effective synchroniza-
tion model will be considered to further reduce the length
of stretch path in each replacement.
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