Composing Analysis Patterns to Build Complex Models:
Flight Reservation

Zhen Jiang
Computer Science Department
25 University Ave.

West Chester University
West Chester, PA 19383
zjlang@wecupa.edu

ABSTRACT

In previous work we developed the concept of Semantic Anal-
ysis Patterns (SAPs). SAPs are mini-applications realizing
a few use cases selected so as to make them as generic as
possible. One of the objectives of this approach is to make
SAPs convenient for inexperienced modelers to build com-
plex object-oriented concept models. In this paper we show
the use of SAPs to build complex analysis patterns from
the combination of simpler patterns. We also claim that
this approach provides models that are also extensible and
reusable. We present here a case study (a flight reserva-
tion system) that illustrates how SAPs can be composed to
build complex models in a convenient way. In developing
our set of patterns we created one pattern and specialized
some existing patterns in the context of flight reservations.
These patterns provide a common structure that has to be
present in any flight reservation system, but they can also
be of independent value.

Keywords

Analysis patterns, Composite patterns, Flight reservation
systems, Flight routing, Object-oriented analysis and design

1. INTRODUCTION

When dealing with the specification, design, or implemen-
tation of a number of similar applications [1], common parts
can be found. These parts can be specified as patterns that
are independent from a particular specification, implementa-
tion details, or implementation languages. Sometimes such
modules are not so simple: a general module that can sat-
isfy different purposes is not trivial. Moreover, the more
complicated modules often vary slightly from application to
application. As the number of applications increases, their
management becomes increasingly difficult and unwieldy. In
previous work [6], we developed the concept of Semantic
Analysis Pattern (SAP), which emphasizes functional as-
pects of the application model as opposed to improving flex-

Permission to make digital or hard copies of all or part of tharknfor
personal or classroom use is granted without fee providatddbpies are
not made or distributed for profit or commercial advantage aatdbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission. Preliminary versions of these papers were pieséma writ-

ers’ workshop at thd 5" Conference on Pattern Languages of Programs

(PLoP). PLoP’09, August 28-30, Chicago, IL, USA. Copyrigh0d9 is held
by the author(s). ACM 978-1-60558-873-5

Eduardo B. Fernandez
Department of Computer Science and
Engineering
Florida Atlantic University
Boca Raton, FL 33431
ed@cse.fau.edu

ibility as in most design and analysis patterns. The main
purpose of this type of pattern is to serve as a starting point
when translating requirements into a conceptual model. A
SAP represents a minimum application (a set of basic use
cases) so that it can be applied to a variety of situations and
it can be combined with other related patterns to describe
more complex applications. A SAP is built by combining
the classes and is required to realize two or three basic use
cases, which are determined in the usual object-oriented way
[14]. SAPs use the POSA template [4].

A possible way to build complex analysis models using
SAPs was described in [6]. However, regardless of the method-
ology used to build the models, having a complex pattern
as a building block makes this work easier. We show here
how to build a complex analysis pattern [15] using a travel
application as an example. In this example, the composite
pattern is built from some existing patterns. The application
requirements are described in a common context for all the
patterns. Our approach is intended for analysts, architects,
and developers, i.e. all those involved in building complex
systems.

Section 2 describes the requirements for this system while
Section 3 presents the atomic patterns that satisfy these re-
quirements. To describe each pattern we will loosely follow
the templates of [4]. Section 4 shows how we compose these
patterns to develop a flight reservation system. The effec-
tiveness and flexibility of the complete application, in effect,
a new SAP, is shown by domain analysis using some exam-
ples. We end with our conclusions in Section 5.

2. REQUIREMENTS AS COMMON CON-
TEXT

A flight reservation system is a commonly used system.
Typically a customer places an order for seats in a combi-
nation of connected flights from an origin to a destination
airport. The customer and the system need to check the
feasibility of flight connections and their schedule [2]. Be-
cause of the complexity of this application, it is difficult to
build it as one unit. We show here that by composing some
simple patterns, we can build this application as a SAP in
a systematic way. The atomic or component patterns corre-
spond to specific functions of the system and can be either
new patterns or existing patterns, perhaps specialized for
the application. Because of the way the whole application is
built, the resulting model is also flexible and reusable [12].
The final composite system could also be the basis for a
framework.

It is possible to visualize the structure of a large system
as a set of component units, where each one is based on a
different set of functional aspects. The list of requirements
for the reservation system is given below. These require-
ments can be expressed as a set of use cases, which we do
not describe in detail for conciseness. The most important
requirements for this system are:

o A flight is defined by a number and a date, and it
defines a route from an origin airport to a destination
airport. A plane is assigned to a flight and it contains
a set of numbered seats.

e Customers make reservations for specific seats in spe-
cific flights.

e A route is the path followed by a flight from its origin
airport to its destination airport. There may be several
flights that share the same origin and destination. A
route includes one or more spans.

e A spanis a part of a route to get from a start airport to
a termination airport as part of a specific flight. The
start (or termination) airport is called the origin (or
destination) airport of this span.

e For each flight there are several connecting flights (i.e.,
different flights that leave from an intermediate stop
closely after its arrival).

e A ticket includes a one-ticket route (one-way ticket) or
a two-ticket route (round-trip ticket). Using a round-
trip ticket, a passenger can go to an airport and come
back using the same route. If the passenger returns
using a different route, he/she needs a set of one-way
tickets. Such a round-trip is special in that its source
and destination are the same. Stops are not indicated
in the ticket unless the flight number changes, which
indicates a plane change.

e An airlinkis any direct flight between two airports. All
airlinks are spans of some flight. A basic airlink has
no stops. A route is a set of connected basic airlinks
connecting all the airports through which it passes.

e For the convenience of customers we may keep informa-
tion on relevant facilities; for origins we keep aspects
such as parking, for destinations we list hotels near the
airport, for intermediate stops we provide lists of hotels
close to the airport, restaurants, etc. This information
may also include details of the cities nearby.

Figure 1 clarifies these concepts. A passenger intends to
go from airport A to airport B. He has four routes available
for this trip:

e Route 1: Using flights 12 and 13.
e Route 2: Using flights 12 and 14.
e Route 3: Using flights 15 and 13.
e Route 4: Using flights 15 and 14.

He could use any of these routes in a one-way ticket from
A to B. If he wants a round-trip ticket he has more com-
binations, any of the four routes above to get to Airport B
can be combined with routes (16,18) or (17,18) to return to

routes from Ato D
connected flights of

Flight 12

aspan Flight 12, one stop at C
of Flight 1 ”

Airport C .
Flight 14

AIrport A pjight 15 (nonstop) Y Airport D Flight 13 Airport B
O X

‘\ , . Flight 14
ISR VLSS S
Airport E
Flight 17
< —— > aspan of flight O airport stop
OO0 flightroute flght connection
Flight #
Airport g 12 13 14 | 15 16 17 18
A ? Q Q
1
C CP 1
o | Slorod S | o 5
~OvalO | @
1
B 5 é S
; 5

Figure 1: Definitions for the requirements.

A. Flight 12 (from A to D) has two spans because it stops
at Airport C, while Flight 15 has only one span (a nonstop
flight). The set of Flights 12, 14 is an airlink from A to
B. Flights 13 and 14 are basic airlinks connecting Airports
D and B. However, Flight 14 has another span to get to
Airport E, while Flight 13 has only one span.

From these requirements, we derive some atomic patterns
that describe specific aspects. The Connection pattern ap-
pears to be new, while Flight Route, Seat Collection, Air-
port Role, Travel Ticket, and Seat Assignment are instan-
tiations of known patterns in a specific context. For each
functional aspect, we use a corresponding pattern to imple-
ment it and make some adjustments to satisfy the context
constraints. Figure 2 describes these patterns as a pattern
language for travel. A Travel Ticket describes an air trip
as a series of tickets that correspond to connecting flights
(Connection pattern). For each specific flight, a seat as-
signment must be obtained (Seat Assignment pattern).
Seat availability is determined by using the Seat Collec-
tion pattern (a flight implies a collection of seats). The
connecting flights may use information from the airports
through the Airport Role pattern. The common contexts
for all these patterns are passenger transportation systems,
including airlines, railways, water navigation, or bus sys-
tems, although for concreteness we use the notation of air
transportation. Figure 2 can be seen as a metamodel that
describes how these patterns should be connected to define
a complete model.

Patterns can be expressed at different levels of abstraction.
For example, a pattern for general customer orders can be
specialized to order tickets. The specialized version can still
be considered a pattern (and not a specific model) because

Seat Airport Rol
Seat Assignment Irport Role

Availability

Seat Seat Schedules
. Booking Seat
Collection Assignment
Airport
Plane Flight Information
Assignment ™ Reservation

Flight
Connections

) Connecting
Descnt?re_s a Describes Flight
np ight Route Spans

Describes
a Route

Travel Ticket

Flight Route

Figure 2: A pattern language for flight reservations.

there are many situations that require ordering a series of
tickets, airline reservations being one of the most important
and probably the most complex. In particular, the Travel
Ticket pattern is a specialization of the Order pattern [5,
7], where each flight corresponds to an order line, and the
Seat Assignment pattern is a special case of the Assignment
pattern [10]. Section 3 presents all the component patterns.

3. COMPONENT PATTERNS

We present here all the patterns described in Section 2.
These are the building blocks for the complex pattern.

3.1 Trave Ticket

Intent

A series of tickets for a certain type of trip (one-way / round-
trip) is booked for a passenger. Each ticket describes a series
of connecting flights from an origin to a destination.
Problem

How should we describe a request for a series of tickets?
Forces

e Going from an origin to a destination often implies a
series of tickets, not just a single ticket.

e The information to model a ticket must include origin,
destination, flight information, and seat information.

e A passenger is responsible for one or more tickets.

Solution

A specialized version of the Order pattern [7]) satisfies the
forces. The class model of Figure 3 shows the required in-
formation, including classes to describe the series of tickets
(TicketSeries), the passenger who is responsible for that
order (Passenger), and two sets of tickets (TicketRoute
and TicketUnit). TicketRoute is used for arranging the
schedule of Flight and TicketUnit is used for price-checking
or possibly even for later check-in. Each TicketRoute object
consists of several TicketUnit objects. The corresponding
sequence diagram is given in Figure 4, which shows how
to place an order for a series of tickets. The two aggre-
gations correspond to two views of the tickets, a set of pa-
per/electronic tickets that describe the costs and are used for
check in, and a set of specific routes describing an itinerary.
Consequences

TicketSeries

Passenger
id(/account#): String 1 1..*| ticketseries#: _String
creditinfo: String book bookdate: String
<
1“*
Ticket#: String
1.2 id(/account#): String

origin: String

1| destination: String
flight#: String
class: {A, B, C}
seat#: String

TicketRoute

type:{one-way, round-trip}
trip_source: String
trip_destination: String

Figure 3: Class diagram for Specialized Order
(Ticket) pattern.

:Passenger :TicketSeries :TicketRoute ‘Ticket-1 ‘Ticket-1
request
check availability
check availability
confirmed (Ticket-1)
check avajlability
confirmed (Ticket-2)
confirmed (Ticket-n)
show-price R —— T
book
book ticket (Ticket-1)
confirm (Ticket-1)
book ticket (Ticket—n)
confirm i i
confirm (Ticket—n
(TicketSeries) ()

Figure 4: Sequence diagram to order a set of tickets.

e This pattern describes only the ordered tickets, it must
be complemented with other aspects e.g., seat and
flight information (although this information may ap-
pear in them too).

e TicketSeries in this pattern may be any other product
with multiple units.

e The customer who places an order may be a person or
a corporation. Here we only focus on the availability
for the passenger who will get the ticket(s) and use it
(them). We could separate this customer role from our
purpose of ticket purchase [13].

e The requested tickets refer to a series of products.
Their relationship and detail processing are discussed
later in other patterns.

e Delivery, payment, and identification details are not
included.

Known uses

In several situations we need to issue a set of related tickets,
e.g. air travel (a ticket for each flight), railway tickets (a
ticket for each train), concerts (subscription to a series of
concerts).

Related patterns

This is a specialization of the Order pattern [7].

3.2 Seat Assignment

Intent

A TicketUnit is assigned to a Seat, Flight, and Span.
Problem

How should we indicate the assignment of a seat to a span
of a flight and correlate it to a ticket unit for as given pas-
senger?

Forces

e For each right to go from one place to another in a par-
ticular flight we need to have a description. A Ticke-
tUnit is a representation of that right.

e A TicketUnit defines a seat reservation for a flight cor-
responding to a particular span. The seat may not be
defined when the ticket is issued.

e To produce the TicketUnit the availability of a seat and
the feasibility of a connecting span and its connecting
flight must be confirmed.

Solution

This is a special case in a general assignment pattern, which
can be used to assign resources [10]. Flight, span, and seat
correspond to a ternary association and the ticket unit that
describes the assignment is an association class. Figure 5
shows classes Seat, Span, and Flight and their assignment
to the TicketUnit. Ticket units are collected in the Tick-
etSeries, which collects all the tickets for a trip.
Consequences

e TicketUnit can provide the right to go in a specific
span of a flight.

e Including a flight seat combination in a ticket indicates
that this passenger has a reserved seat on this flight.

Assignment Pattare

[available series dekets)

TicketSeries

TicketUnit

ticketseries®: String

bookdate: Sk ticket#: String

’ "W fcomected spans)

Y Span

origin: String
destination: String

{comnecting flighes have

i comzcting schedule})

Flight

i | flight#: String

' schedule: List<depatture time, {availeble seat=) S RS
; artival time. stop>| Seat !

s i

; SAESING | | | st

i i - dependence of constraints
'

Figure 5: Class diagram for the Seat Assignment
pattern.

e Constraints on TicketSeries help to define the con-
necting ticketUnit based on available seats, connecting
flights, and connecting spans.

Known uses

Assignments of seats in flights, in a theater, in a classroom.
Related patterns

This is a special case in a general resource assignment pat-
tern [10], which can be used to assign, for example, faculty
to sections in specific courses.

3.3 Collection of Seats

Intent

Keep information about a collection or aggregation of seats
in a plane, vehicle, or theater.

Context

Any physical domain where seats must be kept together as
a group.

Problem

How should we describe a collection of seats that must be
assigned individually?

Forces

e An entity has a certain number of similar units. For
example, each seat is a part of a plane.

e There is a whole class and a part class. For example,
a plane has a whole/part (WP) relationship with the
seats it contains.

Solution

Based on that WP relationship, one can check or modify the
availability of units or other information about the compo-
nents. The class model for this pattern is shown in Figure 6.
Consequences

e This pattern may be used to keep track of the seats of
any vehicle or building that has seats.

Seat

Sear=: Steing

assigned to

Figure 6: Class diagram for the Collection pattern
(Seat and Plane).

e To check if a seat in a requested class is available, the
seat (part object) should know the capacity and class
information of a plane (its whole object). Alternately,
a plane should know if all seats are booked from this
WP relationship.

e Constraints defined on Seat help to confirm the avail-
able seats of a plane which is assigned to a flight.

Known uses

Airplanes, trains, theaters, stadiums, have collections of seats,
usually numbered.

Related patterns

This is a special case in the Whole-Part pattern of [4]. The
Whole-Part pattern describes the aggregation of components
that together define a semantic unit.

3.4 Sef-Connection pattern

Intent

Describe relationships between objects in the same class.
Problem

Objects in a set may have relationships to some others of
the same set. An airport is connected with another by an
airlink. A span is connected to another if the destination
of the preceding span is also the origin of the succeeding
one. A span is also connected to another if the destination
of the preceding span is connected with the origin of the
succeeding one by other means of transportation. If there
is another kind of connection between these two airports
we use other-link (see Figure 7). A flight is connected to
another if and only if airports between two connected spans
have a connecting schedule such that the arrival time of a
flight is before the departure time of the other flight. We
need a convenient way to describe these connections.
Forces

e An object may be connected to another object of the
same type by a semantic relationship.

e The two ends of the relationship have different mean-
ings, e.g., origin and destination of a flight.

Solution
The Connection Pattern describes self-associations in a class

£ bt Flight Span

origin: String
destination: String

Connection Parrern

flight=: String
schedule: List<departure time.
arrival time, stop>

Connection Pattern

{: onnectin

Alrport

name: String
city: String

 contecting

Connection Pattern

Figure 7: Class diagram for three instances of the
Connection pattern.

and satisfies these forces. Figure 7 shows three instances of
this pattern for connecting flights, connecting spans, and
connecting airports.

Consequences

e A connecting association is used to describe the con-
nection between two related objects of the same type.

e Constraints on a class help to define more precisely the
connection between related objects

e There can be association classes defined on the con-
necting association, describing the attributes of such a
connecting association.

e Role names may be needed to clarify the meaning of
the ends of the relationship; e.g., origin.

Known uses

A manager is in charge of several employees, a flight has
several connecting flights, people are related to several other
people in their families.

Related patterns

This pattern is an important special case of the Assignment
pattern [10].

3.5 Flight Route pattern

Intent

A flight route represents a collection of connecting airlinks
that can be used as spans for travel from start to termination
using one flight.

Problem

How should we describe a choice among a set of possible
routes?

Forces

e Each Flight object defines a route from an origin air-
port to a destination airport. Between the origin and
the destination, there may be several intermediate stops.
An airlink which links an airport (called preceding air-
port) to another (called succeeding airport) without
intermediate stops is called a basic airlink. In a route,

- dependence of constraint
{conneding flights nmist have
connecting schedule}

Flight

flight=: String

schedule: List<departure time,

arrival ime. stop>

Path

Span

origin: String 1
destination: String lorigin: String
: destination: String
Route
origin: String

subsst destination: String

o+ {comeaion betwesn
different spans}

basic

1 1
basic e

Airink st -
e Sl L= @
ARlink

c| aidine_link#: String 5

aitline_links: String

{commecion

aldinksina

foute}

Figure 8: Class diagram for Flight Route pattern
and its application in the reservation system.

two basic airlinks are called ’connected’ if and only if
the first airlink ends at the preceding airport of the
second airlink. Two basic airlinks in different routes
are called connected when

1. these two airlinks are connected at one airport, or

2. the succeeding airport (i.e., the destination) of
the first airlink is connected with the preceding
airport (i.e., the source) of the second airlink by
an other-link (other means of transportation).

A route is a set of connected basic airlinks connecting
all the airports through which it passes.

e All basic connection airlinks are available for a passen-
ger to choose as part of a span in a path from source
to destination of his trip.

Solution

A specialization of the Path Pattern [17] satisfies the forces.
The class model for that pattern is shown in Figure 8 (a)
and its application in our reservation system is shown in
Figure 8 (b). Figure 8 (b) shows a flight including one route,
which in turn includes a subset of basic airlinks. This subset
is described in association class Span.

Consequences

e A span is a part of route of a flight, and the choice
of a span is based on the available connected airlinks
in a flight route. For the convenience of customers,
we should list the airlinks of all the airlines. The
customer’s request would be satisfied if there is any
available connecting span, even when it belongs to a
different airline.

e Based on the pattern, connected basic airlinks in a
route of a flight provide a set of available spans. A
passenger may select a subset of airlinks in a route
to form a span from its origin to destination. The
trip can be extended by other connecting spans from
the destination of the preceding span. With all the
connected spans in different flight routes, a passenger
may fulfill a series of trips from source to destination.

Figure 9: Class diagram for Airport Role pattern.

e Constraints defined on connecting flights and connect-
ing spans require that class Airlink provide connections
for different airlinks. The constraints on connecting
flights are based on the connection between two air-
links in different routes. The constraints on connecting
spans are based on the connection between different
spans. The dependence of constraints is shown explic-
itly in Figure 8 (b).

Known uses

Routing of electric networks, transportation systems, water
distribution systems.

Related patterns

[17] describes pipes to fill vats with juice.

3.6 Airport Role pattern

Intent

To support the descriptions for different airlinks, the air-
ports are classified as Origin, Intermediate, and Destination.
An airport usually plays several roles.

Problem

How should we model the role aspects of an object as sep-
arate role objects that are dynamically attached to and re-
moved from that object (core object)?

Forces

e An airport may have different roles for routes and
spans at the same time. In a route, an airport and its
connected airlinks indicate the available connections
for a flight. In a span, an airport and its connected
airlinks indicate the selection of reservations by the
passenger.

e An airport may change its roles dynamically.

e Relationships between an airport and its roles are in-
dependent from each other so that changes to a role
do not affect airlinks that are not involved in that role.

Solution
A specialization of the Role Object pattern [3] can be used
here. A core object usually plays several roles and the same

Shanghai (PVG)

803 7
. O //;,,)‘("
) 858 804) -
Los Angeles (LAX) N \\V/////New Yok (WYC)
~ \\//
Tokyo (NRT) @ Dallas (DAL)
368"}"7*****777\
¥ 598 NG
~3
@ Hong Kong (HKG) Miami (MIA)

® Customer A booked in Dallas, on 8/29/00, round-trip, Dallas —> Los Angeles 9/4/00.

Customer B booked in Shanghai, on 7/8/00, one-way, Shanghai —> Miami 9/5/00,
New York —> Los Angeles 9/10/00.

® Customer B changed his reservation, one-way, Los Angeles —> Dallas 9/8/00.
Customer B booked for his friend, one-way, Hong Kong —> Dallas 9/5/00.

Flight
Airport 368 803(LAX) 803(NYC) 804 858 898
PVG T 4:00 pm
HKG
| T9:00am
v T 2:00 pm
NRT | T2:30 pm
T 6:00 pm WTS:SO pm
LAX [T8:30pm | @|| F 6:00 am k’[M3:30 pm 99 @] F 9:00 am T 6:30 pm | T 9:00 pm
VW 1:30 am v F 11:00 am M 1:30 pm l F 2:30 pm W 1:00 am WW 2:00 am
DAL | @ rrrrrrrrrmprrrr i@l e
W 2:00 am ‘ F 11:30 am I M 1:00 pm F 3:00 pm ? ®
I F 7:30 pm —f M 8:00 am o
NYC N
MIA W830am :[/sags0am

—= Flight route (consists of spans) &—® Ticketroute v Connected flight

Figure 10: Some examples using the reservation sys-
tem.

role is likely to be played by different core objects. When
a core object is currently playing the requested role, it is
in a role specific way and meets any request for that role.
Figure 9 shows the class model for such a pattern specialized
for a flight reservation system.

Known uses

A faculty member in a university may take the roles of in-
structor, thesis advisor, Principal Investigator in a research
project.

Related patterns

This pattern is a special case in the Role Object pattern [3].

4. FLIGHT RESERVATION PATTERN

Intent

This pattern describes the placement of an order for a series
of tickets.

Example

Figure 10 shows a specific example of the way of using such
a system. Customer A wants to make a reservation in Dal-
las (DAL) on 8/29/00 (MM/DD/YY) for a business class
round-trip to Los Angeles (LAX) next week. Customer B
from Shanghai needs to attend a conference in Los Ange-
les on 9/12/00. Before getting there, he wants to travel to
several cities in the United States. Starting from Shang-
hai (PVG), he plans to go first to Miami (MIA). Then, he
will go along the east coast by car. It will take him several
days until he arrives at New York. From New York (NYC),
he continues the trip by plane and arrives at LAX before
9/12/00. He wants to make a reservation for such a trip.
But a friend visiting in Hong Kong (HKG) asks customer
B to make a reservation for him and his family (wife and

Pasanger |, ®o | TicketSeries Lo| TicketTeit
ijaccourt): Bring tickiomieckt g tideeti#: Brig AEOCHTI ¥ Chee
aedifo: rig ‘bookdte: Ay * npldrebtimdp or dpmdme
1
: {amnikhle sariee vichuts)
TicketRmzne -
s foremyondarplf | ol
tp_sames: Sk : Span.
top_dbstiatin; Sring
] Aring
2 fethurin: Aring
{camectig flidts ha {fmectinbetmaan
cometing schedik T diferet spars)
1 camatig 1% LhE sexH) |
Flight Seat \
1.y fhget: Aring seathh i la_comseted by
schadule: List=departure tie, I] otur Jis
il tioe stopd | att
1 1. 3 i
l i Gpire m.ﬁ I gf'&i:‘g
1 1 b foedmrher {
I—‘m Flane of seds 1 i 3
: type: Srng ek /‘ _soviting (g condiin
Route frpniy Ve Toke
e — suCpay molngf T ’ cam
igi drg. chskfo: bfalis o} — —1 P
SaHain AE el AirperiRale
et ok Type: {roe 1,
T R Ca oy e 1}
Nl 1w taveting ;
alils bt WG ’-F
dferert .
red rames) Jo.x
fearpecting | able JHH Srk e
Teteenbask g Origin Intermediate Desination
affils ing o Carectng derure_tive: Date el tive: Dite Al thee: Dize
o} aklis?} pikig bt Ftegr departire_tire: Tl ety hotel: Brng
ok

Figure 11: Class diagram for complete flight reser-
vation system.

daughter) to Dallas (from HKG). Now B wants to change
his reservation and make a reservation for the friend so that
he can stay with his friend at Dallas for two days.
Context

Section 2 shows the context for this pattern.

Problem

Building a complicated itinerary for flight reservations is a
difficult problem. Most systems build these itineraries using
a travel specialist who may miss useful possibilities. We
need an automatic way to compose available tickets.
Forces

e The requested tickets and the relationships between
them must be captured in a precise way. Requests
may be individual or group requests.

e A customer’s reservations may change over time and
it should be easy to make these changes.

e The pattern must describe a fundamental semantic
connection. This means the pattern must be simple
enough to apply to a variety of related situations.

Solution

Figure 11 combines all the patterns seen earlier and includes
all their requirements.

Example resolved

Using such a system, customer A can select an available
flight among all those passing through the span from DAL
to LAX, i.e., 803 < M8 : 00am, M3 : 30am; F'6 : 00am, F'7 :
30pm >, and select another to come back, i.e., 368 < T'8 :
30pm, W8 : 30am >. Although the route of flight 803 covers
the span from LAX to DAL and he may select flight 803 for
his ticket, he does not use such a flight because he does not
want to wait until Friday. He removes the relationship of
the ticket for the back trip and resets it to an earlier flight
(flight 368). He will get a series of tickets with two sets of
round-trip ticket units. The first one is for the trip from
DAL to LAX and the second one is for the trip back to
DAL. Each ticket unit in the set represents a span using a

Passenger

@ object entity

<one-way,
DAL, LAX> .
--== dynamic role

fffff association as class

—— ternary association, mai
construction of trip route,

"__*— 1-to-many relationship

— connecting (relationship)
disconnected relationshi|

p

<803, M 8:00at
M 3:30pm>

| span
J E— 7.‘ <DAL, LAX>
.

<LAX, DAL>
}
|

Airport
<N

airportRole
Origin

Intermediate

<M 1:30 pm>

<w 1:30 an®’

Figure 12: Domain analysis of a reservation system
for customer A (round-trip).

part of a route of the flight. For example, customer A uses
the part of route of flight 803 from DAL to LAX and that
of flight 368 back to DAL. A trip in any set can be extended
by a ticket with a connecting span. The extension will be
discussed in the next example for customer B. Any airport
in the trip may have different roles for route and span. For
example, DAL is an intermediate stop for the route of flight
803 but it is also an origin airport for the span from DAL to
LAX. To check if there is an available seat in the requested
class, the detail capacity and class information of planes
< B767,131 > and < B737,189 >, which are assigned to
flights 803 and 368, can be accessed by the collection of
requested seats. If the requested seat is not available and
there is no more available seat in the plane, he may use
another flight. Finally, customer A will be satisfied by a
seat in the plane.

As shown in Figure 12, J17 in < B767,131 > and F12
in < B737,189 > are seats he can book. Using the same
system, customer B can select a series of connecting spans
for the one-way trip from Shanghai to LAX based on all the
basic airlinks supported by connecting flights. As shown
in Figure 11, among all the basic airlinks, he selects span
< PVG,LAX > and its connecting span < LAX, MTA >,
which are part of routes of flight 858 and its connecting
flight 368 to go to MIA. Flight 858 is connected by flight
368 at LAX because the arrival of flight 858 at LAX is two
hours earlier than the departure of flight 368 in the same
day. The trip by flight 858 is extended by flight 368 from
LAX to MIA. From MIA, the passenger will go to NY by
car; that is, there is an other-link relationship between MIA
and NYC. As the arrival time of NYC is earlier than the
departure time of flight 803, the passenger may select the
connecting span of flight 803 from NYC to LAX after a
trip from Shanghai to New York. The connection condition
and its satisfaction, which is requested by the customer and

®
<M 3:30 pm, T 8:30 pp>

Passenger

customer_B

ternary association, major
variety in reservations

TicketRoute

<one-way,
A\ PVG, LAX>

<803, M 8:00at
M 3:30pm>

airportRole
Origin

Figure 13: Domain analysis of a reservation from
Shanghai to LAX for customer B.

supported by the routes of flights, are used to check the
feasibility of spans for the trip. The availability of seat(s) in
the plane assigned to the route of the used span is checked
for the reservation. If there is no available seat in the plane,
the customer should select another set of connecting spans to
reach the destination of his trip. After the check, customer
B makes a reservation for the available series of tickets with
three one-way ticket units (see Figure 13).

After a request from his friend in Hong Kong, customer
B wants to change his reservation so that he can stay at
Dallas with his friend for two days. He extends the first
span < PVG,LAX > of flight 858 to DAL. After that, he
continues his trip from DAL to MIA by using a connecting
span of flight 804. It is advantageous here to keep most of
the feasible parts of the trip so that the reservation can be
made easily and quickly in a very complex and dynamic situ-
ation. In Figure 14, the customer only changes the connect-
ing spans at DAL. Note that the related connecting flights
and the connecting spans based on the basic airlinks of the
routes are already available in the system, providing an easy
change (see Figure 14).

For the friend and his family, customer B selects flight 898
and makes a reservation for three seats in the same trip. As
shown in Figure 15, there is a series of one-way tickets for the
friend. Each ticket unit is assigned to flight 898 (from HKG
to DAL), a seat on the plane, and the span based on the
route of such a flight. Except for the seat, all the ticket units
share the same information of this trip. Duplicate copies of
the information for airports and flights are avoided in such
a system. This simplifies the process of finding the feasible
spans and available seats for everyone in the family. It also
facilitates the management of the information for airports
and flights.

Known uses
Orbitz provides possible routes between any two destina-
tions, including flights of any airline. These can be con-

Passenger

TicketSeries

anghai, 2086032>Q70800y——
A I — Ti change of the reservatior*
<N

customer_B

TicketRoute

P~ <one-way,
A\ PVG, LAX>

airportRole
Origin

Figure 14: Domain analysis of a changed reservation
for customer B.

verted into reservations and later into tickets. American
Airlines provides similar functions, but includes only their
own flights and those of their alliance partners.

It is a good example of a complex system that uses fa-
miliar, smaller patterns. Most airline web sites use similar
models, although not necessarily object oriented.
Consequences
The model satisfies the forces in the following ways:

e The pattern describes the request and satisfaction of
ticket(s) for different types of trips.

e The pattern can be used as a more abstract pattern; it
can be applied, for example, to any reservation system
for a series of products. The products may be different
in different applications.

e Some of the component patterns could be replaced by
a pattern with a different function. This would allow
us to extend the model for other applications or with
different functions. This and the previous consequence
make this pattern reusable and extensible.

e The effect of other activities can be reflected through
appropriate operations.

e [t is easy to make changes in reservations or to add
more functions for a ticket, e.g., descriptions of stops.

In order to make the pattern applicable to other cases, we
have left out:

e Details of the items, such as operations for each ser-
vice.

e Information about the airlines.

e Exceptions, e.g., unavailable tickets, delays, and flight
cancelations.

Passenger

- a new reservation
Friend of

customer_A

- H , Tokyo>

<N0.534, NRT, LAX

/ Destination
4
O\ 2:00am>

airportRole
Origin

Figure 15: Domain analysis of reservation for the
friend and his family.

e Alarms; for example, when a flight is sold out.
e Historical information.

e Billing and payment policies, e.g., order cancelation
and refunding.

e Personal identification.

These aspects should be completed with additional pat-
terns.
Related patterns This is a composite pattern using the
six patterns described earlier.

5. CONCLUSIONS

Our approach involves the use of object-oriented methods
and Semantic Analysis Patterns. By solving this type of
problem using object-oriented methods we reap the general
benefits of this approach, i.e., reusability, extensibility, and
conceptual abstraction. It is recognized by researchers and
practitioners that object-oriented methods are superior to
procedural approaches for handling complex systems. This
advantage extends to our approach. The general use of pat-
terns is considered an advance in object-oriented methods
because patterns distill the knowledge and experience of
many developers and are highly reusable. Patterns also im-
prove software quality because they have been scrutinized
by many. Our Semantic Analysis Patterns have been shown
to ease the task of building conceptual models by directly
translating functional aspects of an application [6] and can
also be used to define Secure SAPs, where the functional-
ity is complemented with authorization and authentication
aspects [11]. In this paper we have shown, through a case
study, the ability of SAPs to compose patterns to build com-
plex patterns or complex models in general. The component
patterns realize the specifications of the system. While ex-
periments with actual projects are necessary to prove the

practicality of this approach, we can say that this methodol-
ogy is a better way to build complex systems than procedural
programming or ad-hoc object-oriented methods. We have
also shown our approach to be convenient to improve prac-
tical approaches such as XP [8], which is another proof of its
possible value. There are other object-oriented approaches
based on patterns, e.g., several approaches are discussed in
[18], and we don’t claim that our approach is better than
any of these methods, because this would require a detailed
and lengthy study. We do claim that our approach allows us
to build complex models in a convenient and error-free way.

The specific problem that we used as a case study is of
intrinsic interest because of its economic importance [16]. It
is clear that software for flight reservations defined accord-
ing to the requirements of Section 2 is used in many places.
This software has been designed either by the procedural ap-
proach (most likely) or by object-oriented methods (in the
most recent cases). However, our search did not yield any
complete examples, only trivial portions in some textbooks.
It is clear that software with this functionality is used in
practice. We cannot then compare our solution to other so-
lutions to this specific problem, but it was not our aim here
to show a better solution to this problem; the example was
selected because it was complex enough to show the value
of our approach. Based on the discussion above, we would
expect our solution to this specific problem to be easier to
develop, more flexible, and more reusable than most solu-
tions, at the same time without losing modeling precision.
More importantly, the use of analysis patterns can help build
good conceptual models to designers who have little experi-
ence.

6. ACKNOWLEDGMENTS

Our shepherd, Sergio Soares, provided valuable comments
that considerably improved this paper.

7. REFERENCES

[1] M. Blaha and W. Premerlani. Object-oriented
Modeling and Design for Database Applications.
Prentice-Hall, 1998.

[2] C. Ball. An object oriented analysis of air traffic
control.

MITRE Corp. August 1991. Document also available at
http://www.mitrecaasd.org/library/tech_docs/pre1999/
Wwp9Ow542,/.

[3] D. Baumer, D. Riehle, W. Siberski, and M. Wulf. Role
object. Chapter 2 in Pattern Languages of Program
Design 4. Addison-Wesley, 2000. Document also
available at http://jerry.cs.uiuc.edu/plop/plop97/
Workshops.html#Q2.

[4] F. Buschmann, R. Meunier, H. Rohnert,

P. Sommerlad, and M. Stal. Pattern-oriented Softwrae
Architecture. Wiley, 1996.

[5] E. Fernandez and X. Yuan. An analysis pattern for
reservation and use of reusable entities. Proc. of the
Pattern Languages of Programs Conference
(PLoP’99). 1999. Document also available at
http://jerry.cs.uiuc.edu/~plop/plop99.

[6] E. Fernandez and X. Yuan. Semantic analysis
patterns. Proc.of 19t" International Conference on
Conceptual Modeling, 2000, pages 183-195.

[7] E. Fernandez, X. Yuan, and S. Brey. Analysis pattern
for the order and shipment of a product. Proc. of the
Pattern Languages of Programs Conference
(PLoP’00). 2000. Document also available at
http://jerry.cs.uiuc.edu/~plop/plop2k.

[8] E. Fernandez. Building complex object-oriented
systems with patterns and XP. Ezxtreme Programming
Perspectives. M. Marchesi, G. Succi, D. Wells, and L.
Williams, (Eds.) Addison-Wesley, 2003, pages 591-600.

[9] E. Fernandez, T. Anantvalee, J. Labush, and
M. Larrondo-Petrie. Analysis patterns for elections.
Proc. of the Nodic Conference on Pattern Languages
of Programs Viking PLoP’05. Otaniemi, Finland,
September, 2005.

[10] E. Fernandez, T. Sorgente, and M. VanHilst.
Constrained resource assignment description pattern.
Proc. of the Nodic Conference on Pattern Languages
of Programs Viking PLoP’05. Otaniemi, Finland,
September, 2005.

[11] E. Fernandez and X. Yuan. Securing analysis patterns.
Proc. of the 45" ACM Southeast Conference
(ACMSE’07). March, 2007. Document also available
at http://acmse2007.wfu.edu.

[12] M. Fowler. Analysis Patterns-Reusable Object Models.
Addison-Wesley, 1997.

[13] M. Fullerton and E. Fernandez. An analysis pattern
for customer relationship management (CRM). Proc.
of the 6" Latin American Conference on Pattern
Languages of Programming (SugarLoafPLoP’07).
2007, pages 80-90.

[14] C. Larman. Applying UML and patterns (3"
Edition). Prentice-Hall 2006.

[15] D. Ridhle. Composite design patterns. Proc. of the
1997 Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA’97).
ACM Press, 1997, pages 218-228. Document also
available at http://www.riehle.org/computer-
science/research/1997/oopsla-1997.pdf.

[16] H. Riebeck. The ticket chase. IEEE Spectrum, January
2003, pages 72-73.

[17] S. Shlaer and S. Mellor. An object-oriented approach
to domain analysis. Object Lifecycle: Modeling the
World in States, Prentice-Hall, Englewood Cliffs, New
Jersey, 1991.

[18] K. Siau and T. Halpin. Unified Modeling Language:
Systems Analysis, Design and Development Issues.
IDEA Group Publishing, Hershey, PA, 2001.

